
Genetic Programming for Document Images Segmentation and

Classification

by

Hayden Mulholland

Submitted in fulfilment of the

requirements for the degree of

Master of Science

at

School of Computer Science,

University Of KwaZulu-Natal

South Africa

December, 2007

c© Copyright by Hayden Mulholland, 2007

SCHOOL OF COMPUTER SCIENCE,

UNIVERSITY OF KWAZULU-NATAL

The research described in this dissertation was performed at the University of

KwaZulu-Natal under the supervision of Prof. Jules-Raymond Tapamo and Dr. Nelishia

Pillay. I hereby declare that all material incorporated in this dissertation is my own original

work except where acknowledgement is made by name, or in the form of a reference. The

work contained herein has not been submitted in part or whole for a degree at any other

university.

Signed:
Hayden Mulholland

Signed:
Prof. Jules-Raymond Tapamo

Signed:
Dr. Nelishia Pillay

Dated: December, 2007

ii

My supervisors,

my colleagues,

my family,

and my friends.

iii

Table of Contents

Abstract . viii

Acknowledgements . ix

Chapter 1 Introduction . 1

1.1 Context and problem description . 1

1.2 Objectives of study . 2

1.3 Contributions of the study . 2

1.4 Plan of the dissertation . 3

Chapter 2 Literature survey . 4

2.1 Image segmentation . 5

2.2 Feature extraction . 5

2.3 Classification techniques . 7

2.4 Document image segmentation systems 9

2.5 Evolutionary methods . 9

Chapter 3 Image segmentation methods and techniques 13

3.1 Texture Segmentation . 13

3.2 Feature selection . 14

3.3 Feature extraction . 15

3.3.1 Markov Random Fields . 15

3.3.2 Discrete Wavelet Transforms (DWT) 16

3.3.3 Gabor Filtering . 17

3.3.4 Grey Level Co-Occurrence Matrices and Haralick Features 19

3.4 Conventional Classification . 23

3.4.1 K-Means . 24

3.4.2 C-Means . 29

iv

Chapter 4 An introduction to genetic programming 34

4.1 Genetic populations . 35

4.2 Genetic system control models . 35

4.3 The representation of individuals . 35

4.4 The primitives . 36

4.5 The terminal set . 36

4.6 The function set . 36

4.7 Fitness cases . 37

4.8 The evaluation of individuals . 37

4.9 The fitness function . 37

4.10 Selection and inverse selection methods 39

4.11 Genetic operations . 40

4.11.1 Reproduction . 40

4.11.2 Mutation . 41

4.11.3 Crossover . 41

4.12 Termination criteria . 42

4.13 Population initialisation . 43

4.14 Parallel populations . 44

Chapter 5 Systems implemented . 47

5.1 Genetic system . 47

5.1.1 The concept . 48

5.1.2 Quick clustering . 50

5.1.3 The training module . 50

5.1.4 The segmentation module . 50

5.1.5 The genetic parameters . 50

5.1.6 The training set . 54

5.1.7 Human input . 54

5.1.8 The terminal set . 56

5.1.9 The splitting of training and input data 57

5.1.10 The function set . 58

v

5.1.11 The representation of individuals 61

5.1.12 The fitness function . 61

5.1.13 Finishing off . 64

5.1.14 Example training and segmentation 64

5.2 Comparison system . 68

5.3 Post-processing . 69

5.3.1 Pass 1: fuzzy class removal . 72

5.3.2 Pass 2: text component clean-up 73

5.3.3 Pass 3: noise culler . 74

5.3.4 Pass 4: block assignment . 76

Chapter 6 Experimental results and discussion 78

6.1 Data set . 78

6.2 Genetic program creation . 79

6.3 Methods used for comparison of results 79

6.3.1 Basic terminology . 80

6.3.2 Confusion matrices . 80

6.4 Measures derived from a confusion matrix 81

6.4.1 Receiver Operator Characteristic (ROC) graphs 82

6.5 Individual results . 83

6.5.1 Result comparison . 83

6.5.2 Run-time comparison . 83

6.5.3 Qualitative comparison . 88

6.5.4 Statistical significance . 89

6.6 Interpretation of trained genetic programs: 91

6.6.1 Image . 92

6.6.2 Text . 92

6.7 Random individual generation vs. genetic programming based individual

generation . 92

vi

Chapter 7 Conclusion and future work . 94

7.1 Limitations . 95

7.2 Future work . 95

Bibliography . 97

Appendix A Implementation details . 105

A.1 Program Design . 105

A.2 The genetic system . 106

A.3 The image processing system . 109

A.4 The human interface classes . 112

A.5 The filing . 113

A.5.1 .PWN Cached image format . 113

A.5.2 .GDT Genetic input format . 114

A.5.3 .HDT Genetic algorithm format 115

Appendix B Comparison of results . 117

Appendix C Original images . 123

Appendix D K-Means based method results 131

Appendix E Genetic programming based method results 139

vii

Abstract

Document image analysis systems automate the process of interpreting document images

by combining information extracted from the document image. An important part of this

information is obtained via image segmentation. This dissertation focuses on texture based

document image segmentation and discusses some common methods of feature extraction

and classification that are used to achieve the segmentations.

Genetic programming is a relatively fresh approach to the problem of document image

segmentation and is considered to be a good technique for optimising existing algorithms.

In this dissertation, a document images segmentation technique based on genetic program-

ming is presented. The genetic programming based solution performs segmentations and

combines them in a suitable manner to solve the document image segmentation problem.

The segmentations that the genetic programming based method combines to perform

segmentation can be from the K-Means algorithm or even a combination of any segmen-

tation algorithms that express their segmentations in a suitable format. For the purpose of

this dissertation, the K-Means algorithm will be focused on.

From experiments performed using the Grey Level Co-occurrence Matrix(GLCM)/K-

Means based method and the genetic programming method it appears that the genetic pro-

gramming based method is capable of producing better and more consistent results than

the GLCM/K-Means based method. The genetic programs also make more efficient use of

the Haralick features due to the feature selection approach taken when creating the genetic

programs. This results in far fewer Haralick feature spaces needing to be calculated in

order to perform segmentations of comparable accuracy.

viii

Acknowledgements

I would like to thank the following people and institutions for their assistance with the

creation of this dissertation:

– My supervisors; Prof. Jules R Tapamo and Dr. Nelishia Pillay for all of their ideas,

advice, help and support throughout the course of this project.

– My colleagues and Soren Greenwood for their help and ideas.

– My parents, sister and friends for all of their support.

– Claire McHendrie for all of her help and encouragement.

– Adriaan Tijsseling for the Gabor filtering libraries that have been adapted for the

Gabor filtering used in this project.

– The Mediateam image database staff.

– All of the academics kind enough to make their publications easily available online.

– The NRF and the University of KwaZulu-Natal for their financial support.

ix

Chapter 1

Introduction

1.1 Context and problem description

Document image analysis is a major field of research in image processing, with a large

number of applications. Document image analysis systems automate the process of the

interpretation of document images by combining information about the document image.

Such information is obtained through the use of image segmentation, layout understanding,

symbol recognition, and the use of rules based upon the application. The combined data is

then used to interpret a document image in a way that is most suitable to the application[63,

96].

The problem that this dissertation focuses on is texture based document image segmen-

tation. Texture based segmentation is the partitioning of an image into regions based upon

the attributes of the textures in the image. Document image segmentation is an important

part of document image analysis as it provides information from which the layout of a doc-

ument is determined. The layout of a document image is in turn used to determine which

regions to run optical character recognition (OCR) on, which regions to store or process as

images, and which parts of the image simply contain background.

Texture based document image segmentation algorithms are generally based on feature

extraction and classification techniques. Feature extraction techniques include Gabor fil-

ters, GLCM’s (henceforth referred to as grey level co-occurrence matrices) and wavelet

transforms. Classification algorithms include techniques such as neural networks and clus-

tering techniques such as the K-Means and C-Means algorithms. In general, information

about the document image is obtained via feature extraction algorithms, and then processed

by a classification algorithm to achieve a segmentation.

Evolutionary algorithms are artificial intelligence techniques which entail the simu-

lation of a population undergoing biological evolution. The population is comprised of

possible solutions to a problem. This is achieved via the use of mechanisms inspired by

evolution such as reproduction, mutation, genetic crossover, and natural selection[11, 32].

1

2

The use of evolutionary methods is relatively new in image processing and they are playing

an ever increasing role in document image analysis. Evolutionary methods are frequently

used to improve existing solutions to problems, as they are often able to create more com-

putationally efficient and accurate algorithms.

There are many texture based document image segmentation implementations that com-

bine a feature method and classification approach, and produce good results[10, 24, 25, 41,

56]. However, many of these systems are very computationally expensive, and most doc-

ument image segmentation algorithms are not entirely accurate. Better solutions can also

be reached by determining which features are the best to cluster for a particular group of

images, or by finding new ways to combine different feature methods.

Evolutionary methods could lead to a more efficient solution to the problem of tex-

ture based document image segmentation, and such techniques could be adapted to other

segmentation and classification applications. In this dissertation, a document image seg-

mentation technique based on an evolutionary approach to the K-Means classification of

Haralick features from GLCM’s is presented.

1.2 Objectives of study

The objectives of this study are to:

(1) Survey and discuss the current state of texture-based document image segmentation.

(2) Survey and discuss current genetic programming techniques and systems.

(3) Develop a novel texture based method for document image segmentation via genetic

programming.

(4) Test genetic programs (trained by the developed genetic system) against a large data

set of images, to determine the accuracy of the trained genetic programs.

(5) Compare the results obtained against results obtained via a conventional technique.

1.3 Contributions of the study

In this study, a novel document image segmentation process based on genetic programming

has been developed. To train a genetic program, the implemented system uses a single

3

training set, which consists of: the training image, segmentations of the image via a K-

Means/Haralick feature based algorithm, and some user input. The trained genetic program

is then able to accurately segment images with reasonably similar distributions of Haralick

features (see chapter 6 for detailed results).

The system currently makes use of only the K-Means/Haralick feature based algorithm

for training the genetic program. However, the framework is designed in such a way that

it is possible to make use of, and combine, multiple segmentation techniques with the

created genetic programs. For example, it would be possible to combine Gabor filters

based segmentations with the Haralick feature based segmentations.

From experimentation performed, it has been determined that the genetic programming

based segmentation method is on average more accurate than the use of grey level co-

occurrence matrices with the K-Means algorithm, even over a very large and varied set of

test images (see chapter 6 for more details on the results). Due to the feature-selection type

nature of the method discussed, the genetic programming based method also makes more

efficient use of features, potentially resulting in lower execution times.

1.4 Plan of the dissertation

The rest of the dissertation is organised as follows:

Chapter two contains a discussion of the current literature relating to this line of re-

search. The current methods of classification and feature extraction relating to document

image segmentation are then discussed in the third chapter.

Genetic programming is discussed in the fourth chapter, which is followed by a de-

scription of the implemented systems in chapter five. In chapter six, the methodology of

the experiments is discussed, the results of the experiments are then presented and com-

pared with other methods of document image segmentation.

The final chapter states the conclusions of this dissertation and discusses possible future

work that would serve to further expand this line of research, as well as the limitations of

the implemented genetic programming based system.

Chapter 2

Literature survey

In this chapter, applications of genetic programming that share characteristics with the

genetic programming system to be developed are discussed. As far as has been established,

there has been no application of genetic programming in previous works that takes the same

approach to image segmentation as the system that has been presented in this thesis.

In terms of the scope of this study, a document is any printed or written item, as a

book, article, or letter. The primary aim of document image processing is to recognise the

graphics and text components in a document and to extract the required information from

the text and graphic components[49]. Most of this processing is the type of processing

that humans automatically perform when viewing a document. Such processing includes

determining whether an area of a document is part of the text component or the image

component of the document, recognising characters in the document and classifying text

scripts [22].

At the moment, the field of document image processing is very well established. There

is a large variety of applications that fall under the document image processing category,

many of which can be performed by a variety of methods[49]. This includes applications

such as:

(1) Text script recognition[22].

(2) Optical character recognition[8, 86].

(3) Document image segmentation[31].

(4) Text and background classification[31, 88].

(5) Circuit diagram segmentation (into line drawing and text components)[14].

(6) Document cleaning and restoration[92].

The field of document image analysis has two major categories; textual processing

(which processes text components of document images) and graphical processing (which

4

5

deals with the document’s non-textual graphic components). Textual processing consists

of finding bodies of text, determining text skew and recognizing the text via OCR[49],

as well as possibly improving the OCR output by comparing it to prior knowledge of the

document’s language[77]. Graphical processing largely deals with tasks such as the recog-

nition of non-textual line and symbol components within diagrams and tables as well as the

discovery of pictures in documents.

2.1 Image segmentation

The segmentation of an image is a computer vision process involving the partition of an

image into a number of regions according to a certain criterion of homogeneity. The goal of

segmentation is generally to locate certain regions of interest in an image (such as regions

of text or human faces). An example of a basic segmentation is the thresholding of an image

into two particular sets of pixels based on pixel value. This would result in two different

segments of the image.

Document image segmentation is image segmentation specifically carried out on docu-

ment images. This form of segmentation occurs on two levels. On the first level, if the docu-

ment contains both text and graphics, these are separated for subsequent processing[35, 96].

In general, segmentation algorithms are too basic to perform this type of segmentation per-

fectly. However, these algorithms are usually very general, predictable and efficient. On the

next level, the text itself is segmented by locating columns, paragraphs, words, and charac-

ters. On the graphics segment, additional segmentation usually includes separating symbol

and line components. A typical approach to document image segmentation is shown in

figure 2.1.

2.2 Feature extraction

In the field of image segmentation, feature extraction is the process of simplifying the raw

data of an image (the image pixels) into a smaller set of data which is more useful and

manageable for subsequent steps of the image segmentation process. Feature extraction

generally reduces the dimensionality of the data, which is important in data analysis since

a smaller amount of more relevant data is made available[89].

Gabor filtering is a feature extraction technique that can be viewed as a sinusoidal wave

6

Figure 2.1: The above diagram shows a typical layout of a document image processing
system. The initial data extraction refers to any necessary binarisation, thresholding, noise
reduction, or segmentation. After this has been done, the document is split into its im-
age and text components, which are then processed separately. Once their processing is
completed, all of the document’s information is analysed[65].

of a particular frequency and orientation modulated by a 2-D Gaussian function[9]. Gabor

filters have recently been given a lot of attention due to the fact that the characteristics

of certain cells in the visual cortex of some mammals can be closely approximated by

these filters[9]. This method is ideal for use on document images as its filtering is highly

directional and is performed along several different angles and frequencies. Gabor filtering

(see fig. 3.2, in section 3.3.3) is useful because text is highly directional and filtering along

particular angles can thus be very helpful for determining whether something is or is not

text. Gabor filters have also been shown to possess optimal localisation properties in both

the spatial and frequency domains and hence they are well suited for the purpose of texture

segmentation[9].

7

Once filtered, the image can then be used for image segmentation. Sometimes thresh-

olding the filtered image or merging the filtered image with other filtered images achieves

better results.

This technique has been extensively used for target detection, fractal dimension man-

agement, document analysis[22], edge detection, retina identification[10], image coding

and image representation[9, 19, 47], and clearly provides a powerful representation space

for describing image textures[17].

The discrete wavelet transform, transforms discrete signals into a series of wavelets

with a range of different frequencies and coefficients. This method has been used for pur-

poses such as cleaning images, image compression, feature extraction and texture clas-

sification. Wavelet transforms have been used in many applications in document im-

age processing; from removing document image interference[92] to segmenting images

entirely[73]. Wavelets have the important property of describing patterns and repetitions

in a document easily in the feature space that the document is converted to. This makes

wavelets a very useful tool for texture segmentation.

One of the more frequently used methods for feature extraction in document images is

Grey Level Co-occurrence Matrices (GLCM). This method is a part of the statistical group

(as opposed to the less popular structural group) of texture analysis algorithms. Once a

GLCM is calculated, Haralick features can be determined from it [29, 41]. These features

include measures such as contrast, energy, correlation, inverse different moment, inertia,

mean and variance. GLCM’s and Haralick features have been successfully used for the

texture based segmentation of colour images of blood smears on slides for the purposes of

automated differential blood counts[81], images of irises[10] as well as many other kinds

of images[60, 62].

2.3 Classification techniques

Data classification is the process of objects, or data, being grouped into classes based on

some criteria. Classification is often used on the results of feature extraction algorithms

in order to perform segmentation[58]. K-Means is a clustering algorithm which classifies

points of data, in any number of dimensions, into a specified number of groups (K). The

K-Means algorithm clusters points in the feature space by calculating the closest centroid

8

(by a distance calculation) to each of the points to be clustered. The positions of the cen-

troids are determined by the K-Means algorithm. Centroids to cluster data around are most

commonly initially chosen at random. These centroids then move according to the average

position of the closest points around them. Once the centroids no longer change position,

the algorithm has converged and the data is considered clustered[13, 24, 57]. The prob-

lem with the K-Means algorithm is that it often gets stuck at local minima and the result

is highly dependent on the initial choice of the prototypes. The K-Means algorithm also

has a fuzzy version called the C-Means algorithm which in some applications will provide

far better results due to its fuzzy nature[24]. Haralick features calculated from GLCM are

frequently used with the K-Means algorithm for the purpose of segmenting the image in

question. As experimental results have shown, this can be a fairly accurate way of seg-

menting an image into K segments[10, 56].

In several works, connected component analysis has been applied to a document image

in order to segment images and text in documents. Once the connected components have

been found, a set of rules is then used to determine which regions are part of the text com-

ponent and which are a part of the image component. This technique has proven to be very

robust and efficient during experimentation[35, 52]. Markov Random Fields (henceforth

referred to as MRFs) constitute a machine learning technique that is used for signal clas-

sification. This technique has been used for the purposes of feature extraction and texture

classification[10]. MRFs have also successfully been used for combining segmentations by

colour methods and texture analysis based methods[50].

Neural networks may also be used as a texture recognition method. Neural networks

deal with texture segmentation by determining the differences between the characteristics

of the texture fields. The accuracy of the segmentation depends upon the discriminating

power and robustness of the neural network. Developing a neural network that would work

well enough to satisfy these two criteria is a difficult problem and is the major flaw of this

method[98]. The segmentation method using split and merge, or pyramid linking has sim-

ilar difficulty in the definition of a discriminant function which measures the homogeneity

among the characteristics of the textures[98].

9

2.4 Document image segmentation systems

As an example, a standard document image segmentation system would take input in the

form of a document image. The system would then run a feature extraction algorithm on the

document image to summarise the data into a more manageable and useful form. The new

feature space would then be passed on to a classification algorithm (such as the C-Means or

K-Means algorithm), and then the classified data would be passed onto a post-processing

algorithm in order to make use of the domain specific rules applying to document image

segmentation.

An example of a more complex non-genetic document image segmentation system is

that of Dong et al[31]. Their method takes a multi-resolution approach with block sizes of

16x16, 32x32 and 64x64, and then determines the probability of each block (at each scale)

belonging to each class. Their system then passes that data onto a sequential Maximum A

Posteriori estimator (MAP, a solution to a Bayesian estimation which aims to maximize the

probabilities that all regions are correctly classified) combined with joint multi-context and

multiscale (JMCM, as proposed in [33]) segmentation. The method of combining SMAP

with JMCMS is performed in the same manner as done previously by Cheng et al. in [18].

2.5 Evolutionary methods

Genetic algorithms were formally introduced in the 1970s by John Holland[44] at the Uni-

versity of Michigan. John Koza later introduced genetic programming[53] which evolves a

program or algorithm to be followed, usually with a different representation to genetic al-

gorithms. Koza initially used Common Lisp; this was due to the ease with which programs

can be defined in terms of functions, since LISP is a functional programming language[91].

Genetic programming (see section 5.1 for more details) is inspired by Darwin’s theory

of evolution. In this methodology, problems are solved by an evolutionary process, result-

ing in the best solution that has evolved through a process of survival of the fittest[64].

The continuing price/performance improvements of computational systems have made

genetic programming attractive for many optimisation problems. Genetic programming is

less susceptible to converging at local optima than many other search methods. However, it

tends to be computationally expensive[76, 91]. Genetic systems, as search techniques, are

effective at pruning the examined search space (in contrast with more brute force search

10

techniques)[25].

The natural selection used in genetic programming is based upon the fitness of the

individuals. The less fit individuals are generally the most likely to be removed. The

fitness (or objective) function is a function that evaluates individuals, giving them fitness

ratings. The fitness function is possibly the most important part of a genetic system as it

dictates which possible solutions are replaced and which continue to evolve via the genetic

operators (such as genetic crossover or mutation)[72, 76, 91].

The representation of genetic programs generally takes the form of a tree. These trees

consist of branch nodes (referred to as function nodes) and leaf nodes (referred to as termi-

nal nodes). Leaf nodes and branch nodes are collectively referred to as primitives[42, 54,

64, 72].

Function nodes usually take on the meaning of particular functions (such as addition,

multiplication and subtraction). The immediate child nodes of a function node are the

parameters of the function. For example; a function node representing addition would

typically have two children, which the function node would add together to produce a

result. The terminals in a tree would generally consist of input variables or constants (such

as pi, X, Y etc.)[42, 54, 64, 72].

Evolutionary methods have recently become more widely used for many purposes in

the field of image processing. Some fields and studies that are related to the field of research

in this dissertation follow:

(1) Optical character recognition[8, 86].

(2) Object detection and extraction[54].

(3) Image classification[82].

(4) Medical image segmentation[26].

(5) Evolving wavelets for higher quality encoding of images (by Grasemann et al [39]).

(6) On-road vehicle detection schemes[87].

(7) Background removal in document images[36].

(8) General image segmentation[15, 25].

11

(9) Primitive extraction[78].

(10) Scene recognition[5].

(11) Image interpretation[43].

Genetic programming has also been successfully applied to texture recognition. The

type of recognition described by Song et al.[84] can be used to recognise exact or very sim-

ilar copies of the texture that the genetic program has been trained to recognise, however,

it is not applicable when it comes to document image analysis since a class of textures are

being recognized as opposed to an exact texture. In this dissertation we attempt to solve

the problem of recognising subclasses of textures (background, image and text) as opposed

to specific textures.

In [85] a system is developed which uses memetic algorithms for partitioning genes

and gene products according to their known biological function based on genetic ontol-

ogy. Memetic algorithms are a combination of genetic algorithms and local searches[97]

and have been proven to be more efficient than genetic algorithms in certain problem

domains[61].

In this study we use the K-Means algorithm to provide training data for the genetic

system. The use of K-Means with genetic programming appears in a number of studies.

For example: Maulik et al.[13] have implemented a system for clustering data via a genetic

programming system based upon the K-Means algorithm (the KGA-clustering algorithm),

which could have useful applications in the field of image segmentation (although in the

study, an image processing application wasn’t explored). Genetic programming combined

with the K-Means algorithm has also been used for navigation systems[80]. In this ap-

plication, the K-Means algorithm is used to cluster possible traversal nodes. The genetic

programming is used for calculating routes. K-Means is used for partitioning numeric

attributes in a genetic programming system for project organisation in[20]. Genetic pro-

gramming has also been used as a way of benchmarking K-Means initialization methods;

this is done by drawing up the probability distribution of the square error values of the

resulting clusters from the K-Means algorithm and approaching its extremes by genetic

programming. The number of iterations required for the K-Means algorithm to converge

are then computed[67].

K-Means and genetic programming has also been used to segment colour images by

12

partitioning the colour cube using the K-Means algorithm with genetic programming[74].

In [15], Bhanu, Lee and Ming propose a learning technique for image segmentation using

genetic programming. The implemented system (for the purpose of document image seg-

mentation) allows the segmentation process to adapt to different environmental effects such

as lighting and weather conditions. The system implemented in this study differs in that it

makes no use of colour information, instead, the textures are recognised via their statistical

attributes.

In [25], Chun et al. present an image segmentation methodology using genetic pro-

gramming based on a random search and a parallel test-and-go technique. The algorithm

provides a method for image segmentation that does not require threshold values or critical

parameters. The method in the implemented system differs in that it does not use genetic

programming for the purpose of creating programs which combine a variety of statistical

attributes of textures for segmenting (possibly) multiple document images.

Chapter 3

Image segmentation methods and techniques

In this chapter various classical methods and techniques for feature extraction and classifi-

cation are discussed.

In our context, image segmentation (as illustrated in figure 3.1) is performed as follows:

(1) The input image is converted into a set of features known as a feature space.

(2) The feature space is processed by a classifier to determine an initial segmentation.

(3) The initial segmentation undergoes post-processing to determine the final result.

Figure 3.1: The general operation of our texture-based image segmentation system.

3.1 Texture Segmentation

Texture based segmentation is the process of segmenting an image based on the charac-

teristics of its textures. Texture is an important property of images in computer vision. In

document images, medical images, satellite images and many other types of images, dif-

ferent regions have different textures. As a result, texture based segmentation is a very

13

14

important field as it allows one to extract and analyse particular regions of interest from

images. Texture segmentation is generally considered to be an optimisation problem[55].

In this dissertation, a texture based approach is taken to the image segmentation problem.

Segmenting images by texture accurately is not a trivial task. There are various prob-

lems that can occur, for instance:

(1) Conventional edge detection algorithms have problems detecting the borders of tex-

tures since textures are made up of intensity fluctuations, which often give false pos-

itives to edge detectors. Also, texture boundaries do not appear the same way as con-

ventional edges, so the texture edges often go entirely undetected by conventional

edge detectors[41, 55].

(2) Problems with texture segmentation arise from the spatial characteristics of textures,

such as determining the class of a texture near the boundary[55, 95].

(3) Large texture sample windows provide more accurate information about what class a

texture belongs to. However, texture boundaries become more of a problem when it

comes to determining the texture’s class, and finding the boundary position. Smaller

windows are better at determining border positions, but classification accuracy is

lost. This problem is known as class position uncertainty[95]. One possible solution

to this problem is to sample the texture with different window sizes[55].

3.2 Feature selection

In principle, more information is better when it comes to clustering data, when working

under the assumption that there is nothing known about the representativity of sets of data.

It would seem that one should use as many features as possible to represent a pattern.

However, some features can simply contain noise as far as clustering is concerned and

thus degrade the performance of the clustering algorithm. Also, the more features being

clustered, the slower the algorithm runs[59].

Feature selection attempts to select the best possible subset of features out of a given

group of features for clustering. The process of feature selection results in more accurate

(since noisy features can degrade the performance of learning algorithms[75]) and more

economical (in terms of storage and computation) classifiers[59].

15

Feature selection is particularly important for data sets with large numbers of features,

such as problems in molecular biology may involve thousands of features [12], clustering

web pages or other documents represented by key-terms[59].

3.3 Feature extraction

In our context, feature extraction is the process of transforming a feature space into a more

manageable format, which is then used by a second algorithm to perform an image seg-

mentation process (such as segmentation or pattern recognition). There are a large number

of techniques that can be used to perform feature extraction on images. Some of the most

frequently used texture based methods are covered in this chapter. They include wavelet

transforms, Markov random fields, Gabor filters and GLCM’s.

3.3.1 Markov Random Fields

Markov Random Fields constitute a machine learning technique that has been used for the

purposes of texture classification and feature extraction[10]. Markov networks are similar

to Bayesian networks in the manner in which they represent dependencies in the networks.

However, Markov networks are able to represent dependencies that Bayesian networks are

unable to, such as cyclic dependencies[27]. Markov networks were first used in the field of

computer vision by Geman and Geman[38]. Markov random fields have been used for :

(1) Combining segmentations by colour methods and texture analysis based methods

(such as Gabor Filters)[50].

(2) Image restoration[38].

(3) Segmentation of 3D scan data[4].

(4) Other applications such as post-processing[99].

Formally, Markov random fields model the joint probability distribution (as shown in eq.

3.1 and 3.2) of a set X of random variables and consist of:

(1) An undirected graph G = (V,E).

Each vertex v ε V represents a random variable in X .

Each edge (u,v) ε E represents a dependency between the vertices u and v.

16

(2) A set of factors φk, one for each clique k in G. Each φk is a mapping from possible

joint assignments (to the elements of k) to non-negative real numbers[27].

The joint distribution represented by a Markov network is given by:

P (X = x) =
1

Z

∏
k

φk(x{k}) (3.1)

where Z =
∑
xεX

∏
k

φk(x{k}) (3.2)

Z is the normalising constant and x{k} is the state of the random variables in the kth clique.

The Markov blanket of a node vi in a Markov network is every node with an edge to vi

(formally, all vj such that {vi, vj}εE). Every node v in a Markov network is conditionally

independent of every other node given the Markov blanket of v[27].

3.3.2 Discrete Wavelet Transforms (DWT)

The first DWT was discovered by the Hungarian mathematician Alfred Haar[40]. The

discrete wavelet transform, transforms discrete signals into a series of wavelets with a range

of different frequencies and coefficients.

The discrete wavelet transform has many applications in science. In particular, it is used

for signal coding. This is done by representing a discrete signal in a more redundant form,

often as a preconditioning for data compression (eg. JPEG compression). Wavelet trans-

forms have been used in many applications in document image processing; from removing

document image interference[92] to segmenting images entirely[73]. Wavelets have the

important property of describing patterns and repetitions in a document easily in the space

that it converts images to. This makes wavelets a very useful tool for texture based seg-

mentation.

A wavelet function ψ (see eq. 3.3) can be used for representing and approximating

functions by superimposing translated and dilated versions of ψ. The translated and dilated

versions of ψ are denoted by ψj,i, where i and j are the translation and dilation parameters

respectively. In image processing, the discrete case is generally used, where i and j only

have integer values[39].

17

ψj,i = 2j/2ψ(2jx− i) (3.3)

Decomposing a function into coefficients for each (j, i) pair is known as a wavelet

transform. In the case of the components of the (j, i) pairs taking on integer values, the

transform is known as a discrete wavelet transform (henceforth referred to as DWT). When

computing the DWT of a function f, it is necessary to find a wavelet coefficient Υj,i for

each j, i pair such that:

f =
∑
j,i

Υj,iψj,i (3.4)

Υj,i =≺ f, ψ �=

∫ ∞

−∞
f(x)ψ̄(x)dx (3.5)

It is required that the wavelet ψ is orthogonal, or that there exists a wavelet ψ̄ which is

the inverse of ψ. The inverse wavelet can then be used to determine the coefficients of the

wavelet transform. The original wavelet can then be used to calculate the inverse DWT[39]

(see equation 3.5).

3.3.3 Gabor Filtering

A Gabor function is a sinusoidal wave modulated by a 2-D Gaussian function. The algo-

rithm applies the Gabor function to an input image, and a filtered output image is returned

(for example fig. 3.2). Gabor filtering is a highly directional filtering technique. Since

text is highly directional, these filters are very useful when applied to text extraction and

recognition processes[46, 93].

g(x, y;λ, θ, ψ, σ, γ) = exp(−x
′2 + γ2y′2

2σ2
) cos(2π

x′

λ
+ ψ) (3.6)

where x′ = x cos θ + y sin θ (3.7)

18

and y′ = −x sin θ + y cos θ (3.8)

In equation 3.6:

(1) λ is the wavelength of the cosine factor.

(2) θ is the orientation of the normal of the parallel stripes of the Gabor function in

degrees.

(3) ψ is the phase offset of the filter in degrees.

(4) γ is the aspect ratio of the Gabor function.

Figure 3.2: Note the differences between the textual and non-textual regions of the image.
This is due to Gabor filters (and text) being highly directional. This makes Gabor filters
extremely useful as far as text extraction is concerned. The original image (figure C.1) can
be found in appendix C.

19

3.3.4 Grey Level Co-Occurrence Matrices and Haralick Features

The use of Haralick features extracted from GLCMs is currently one of the commonly used

methods for texture analysis. This method is a part of the statistical group (as opposed to

the less popular structural group) of texture analysis algorithms. Haralick features include

measures such as contrast, energy, correlation, inverse different moment, inertia, mean and

variance.

The way this is used upon an image is to segment the image into blocks of a given size

and then individually assess the attributes of each block. This can then be used to perform

texture based segmentation on the whole image. This is one of the techniques that will be

used along with the genetic system.

Grey Level Co-Occurrence Matrices (GLCMs)

A co-occurrence matrix is defined over an image to be the distribution of co-occurring

values at a given offset. This technique is mainly used in the process of measuring texture

in grey scale and colour images[29, 41]. Let Im be an image defined as follows:

F: Im = {Pij ∈ {0, 1, 2, ..., 255}, 0 ≤ i ≤ (N − 1), 0 ≤ j ≤ (M − 1) where N,M ∈ N}

Computing Haralick features consists of performing the transformation, f , from Im to a

feature space F which is a L x C matrix of Haralick features, calculated from co-occurrence

matrices.

Im
f−→ F

F = (Fij)

FIJ ∈ F1 × F2 × ...× Fp

Fk ⊆ R

for k = 1..p

0 ≤ I ≤ L− 1

20

0 ≤ J ≤ C − 1

where L,C ∈ N

Figure 3.3: The conversion of an image from the image space (Im) to the feature space (F)

The GLCM is generated from a function which observes the joint probability of two pixels

with particular grey levels being a certain distance away (d) and in a particular direction (

θ). For a given window of size w × w in an image of G grey levels we have the following

matrix:

Cθ,d = cd,θ(i, j)0≤i,j<G

cd,θ(i, j) is the frequency of the grey level j following the grey level i in the direction θ at

the distance d. The above matrix is the co-occurrence matrix, from which Haralick features

can be extracted.

Haralick features

Measures taken from a GLCM are often used to get a more useful feature space. Fea-

tures generated from GLCMs are generally called Haralick features (named after Robert

Haralick)[41, 29]. A list of some of these features follows:

21

Contrast (CON): This measure is used to evaluate the coarseness of a texture, and is also

known as inertia. It is generally very useful for determining whether or not a region is text,

since text is usually very high contrast.

CON =

G−1∑
i=0

G−1∑
j=0

(i− j)2pθ,d(i, j) (3.9)

Entropy (ENT): Indicates the degree of non-homogeneity in a texture.

ENT =

G−1∑
i=0

G−1∑
j=0

pθ,d(i, j)log[pθ,d(i, j)] (3.10)

Energy (ENR): Indicates the degree of homogeneity in a texture.

ENR =

G−1∑
i=0

G−1∑
j=0

(pθ,d(i, j))
2 (3.11)

Maximum Probability (MP): The maximum probability of a co-occurrence in a texture.

This is useful for checking uniformity.

MP = max
(i,j)∈G×G

pθ,d(i, j) (3.12)

Inverse Difference Moment (IDM): Has a maximum value when all elements inside the

kernel are equal[28].

IDM =

∑G−1
i=0

∑G−1
j=0 (i− j)2pθ,d(i, j)

1 + |i− j| (3.13)

22

Correlation (COR): Measures the degree of correlation of the pixels in the sub image

being analysed.

COR =

∑G−1
i=0

∑G−1
j=0 (i− μx)(j − μy)pθ,d(i, j)

σxσy

(3.14)

where μx =

G−1∑
i=0

i

G−1∑
j=0

pθ,d(i, j)

μy =

G−1∑
i=0

j

G−1∑
j=0

pθ,d(i, j)

σ2
x =

G−1∑
i=0

(i− μx)

G−1∑
j=0

pθ,d(i, j)

σ2
y =

G−1∑
i=0

(j − μy)

G−1∑
j=0

pθ,d(i, j)

Mean (MN): Measures the average grey level in a texture. This is useful for discriminating

between textures based upon average brightness.

MN =

∑G−1
i=0

∑G−1
j=0 f(i, j)

N ×N
(3.15)

Standard Deviation (STD): This measures the deviation from the mean in a grey level

texture. Text usually has a high standard deviation. Standard deviation is calculated from

variance (VAR).

V AR =

∑G−1
i=0

∑G−1
j=0 (f(i, j) −Mean)2

N ×N
(3.16)

STD =
√
V AR (3.17)

23

3.4 Conventional Classification

The purpose of feature extraction in document image segmentation is to extract more mean-

ingful and reduced information from an image. Such information can then be used for

classifying regions.

Data clustering entails the discovery of groups of data or the grouping of similar objects.

Each of these groups is called a cluster, which are regions in which the density of objects

is locally higher than in other regions[67].

There are two main categories of clustering algorithms:

(1) Hierarchical clustering: the clustering is presented in a tree-like form. The root node

of the tree represents a cluster containing all points in the space to be clustered. Every

descendant node in the tree represents a sub-cluster of the points that its parent node

contains.

(2) Partitional clustering: data is split into a number of different clusters.

Clustering algorithms generally take as input a proximity matrix containing the simi-

larities/dissimilarities between all pairs of points, or a pattern matrix, where each item is

described by a set of features [67].

Image segmentation can be formulated as a clustering problem [37, 79]. Other appli-

cations of clustering include document clustering [45] to generate content related data for

information access or retrieval [16], market segmentation[21], as well as applications in

medical and biological fields[12, 59].

In the process of document image segmentation, generally the document undergoes

feature extraction and then a classification technique is applied to the extracted features to

determine which segment each region belongs to. In this section two of the conventional

classifiers shall be discussed:

(1) The K-Means algorithm, which is one of the most used data clustering algorithms.

(2) The C-Means algorithm, which is the fuzzy version of the K-Means algorithm.

24

3.4.1 K-Means

The K-Means clustering algorithm converges quickly and is an effective way to cluster

data[48]. The name is due to there being K total cluster centres that result from the algo-

rithm.

This technique can be applied to any application that involves organising large amounts

of data into a given number of clusters. The K-Means algorithm is often used as an ex-

ploratory data analysis tool. In one dimension, it is a good way to categorize variables into

K buckets. With speech understanding it has been used to convert waveforms into one of K

categories. It has also been used in the past for optimising colour palettes in 4,8 and 16 bit

images. K-Means is also used to segment data as a part of a compression scheme[23, 48].

The K-Means algorithm (see algorithm 1) chooses K random points in the data as the

prototypes for the centroids (in as many dimensions as needed). The points in the data that

are closest to each of the K centroids are calculated. The locations of the K prototypes are

then changed to the average location of all of the vectors that are closest to each prototype.

The process of determining which points are closest to which of the K centroids and the

relocation of the centroids continues until the K centroids no longer change position. At

this point the data points closest to each centroid are considered to be part of that centroids’

cluster, and the clustering is complete. This process is illustrated in figure 3.4.

Figure 3.5 shows some post-processed K-Means algorithm based segmentations. See

appendix D for more full sized post-processed K-Means algorithm based segmentations.

The K-Means segmentations shown in figure 3.5 and appendix D are segmentations that

were performed on all of the Haralick features available, all angles (0,45,90 and 135 de-

grees) and distances 1 and 2.

K-Means initialisation methods

The K-Means algorithm can be initialised in the following ways[67]:

(1) The MacQueen Approach (henceforth referred to as MA) was proposed by Mac-

Queen in 1967. K random seeds are chosen out of the points to be clustered. The

rest of the points are assigned to the nearest centroid. The position of each centroid

25

Algorithm 1 The K-Means Algorithm

(1) Choose k initial centroids by one of the initialisation methods. C = {c1, ..., ck}.

(2) For each i ∈ {1, ..., k}, the cluster Ci is the set of points in the data points to be

clustered X that are closer to ci than they are to cj for all j
= i.

(3) For each i ∈ {1, ..., k}, set ci to be the centroid of all points in Ci. The new position

of ci = 1
|Ci|

∑
x∈Ci x.

(4) Repeat steps 2 and 3 until the positions of the centroids no longer change[7].

is recalculated after each additional point is assigned to it.

(2) The Forgy Approach (henceforth referred to as FA) was proposed by Forgy in 1965[3].

K random seeds are chosen out of the data to be clustered. The rest of the data is as-

signed initial membership to its closest seed’s segment.

(3) The Kaufman Approach[51] (henceforth referred to as KA) was proposed by Kauf-

man and Rousseeuw in 1990. This initialisation algorithm is described in detail in

algorithm 2.

(4) Random: The points to be clustered are partitioned at random. This is the most

common initialisation method due to its simplicity and effectiveness. Random ini-

tialisation is used in our implementation.

The KA and random initialisation methods make the K-Means algorithm more effec-

tive, and make the K-Means algorithm behave in a more robust fashion. KA also has a

more desirable behaviour in that it doesn’t result in bad partitioning as often as the other

three methods[67]. KA initialisation has also been shown to cause the K-Means algorithm

to converge faster on average than the other methods. Random, however, is considered to

be the default initialisation method for the K-Means algorithm. This is because of its good

performance and very simple implementation.

The application of K-Means to document images

26

Figure 3.4: A one dimensional clustering, using the K-Means algorithm.

One of the approaches to segmenting document images via K-Means is to cluster the fea-

ture space into three segments (text, image and background). After this has been performed,

post-processing is generally used to clean up the segmentation.

Advantages of using the K-Means algorithm

The advantages of the K-Means algorithm are as follows:

(1) Fast convergence speed (it has been observed that the number of iterations is typically

much less than the number of points[6]).

(2) The algorithm is general, and is thus suited to a large number of clustering applica-

tions.

(3) The algorithm is fairly simple to implement.

(4) There are a large number of expansions to the K-Means algorithm that can be made

27

Figure 3.5: Images 528 and 534 segmented by the post-processed K-Means algorithm. See
appendix D for the full sized images and appendix C for the original images.

in order to make it more accurate or faster[7].

(5) Due to the speed of the K-Means algorithm, it can be run several times on a data set

to determine an optimal clustering.

(6) The algorithm works well when data is naturally clustered.

Disadvantages of using the K-Means algorithm

The disadvantages of the K-Means algorithm are as follows:

(1) The algorithm is not guaranteed to return a global optimum and can converge on

local maxima[6].

(2) Prior knowledge of a particular application is necessary in order to determine what

28

Algorithm 2 The KA initialisation method

(1) Select the most centrally located point to be clustered as the first seed

(2) For all non-selected points (wi) DO

(2.1) Calculate Cji = max(Dj − dji, 0) where distance dji =‖ wi − wj ‖ and Dj =

minsdsj with s being one of the selected seeds

(2.2) Calculate the gain of selecting wi by
∑

j Cji

(3) Select the unselected point wi which maximizes
∑

j Cji

(4) Unless there are K selected seeds, Goto (2).

(5) Assign each non selected point to the cluster represented by the nearest seed.

Figure 3.6: Image 548 (see appendix C for the original image) segmented by the post-
processed K-Means based algorithm. These images demonstrate the inconsistency prob-
lems that can occur when using the K-Means or C-Means (see section 3.4.2) algorithms.
See appendix D for the full sized images.

29

each cluster is (for example: determining whether a cluster is text, image or back-

ground).

(3) Since the algorithm needs to know the number of clusters to expect, situations can

occur in which there are fewer clusters than expected. This may lead to incorrect

results (figure 3.7 demonstrates this problem).

(4) The K-Means algorithm’s results depend on initial starting conditions (initial cen-

troids and ordering)[68]. This may cause the K-Means algorithm to return incon-

sistent results since random centroid selection is one of the preferred initialization

methods (figure 3.6 demonstrates this problem).

(5) The quality of the final solution is largely dependent on the initial set of clusters. In

practice, the results may be much poorer than the global optimum[6].

(6) If the data is not naturally clustered, the K-Means algorithm may return poor results.

3.4.2 C-Means

The C-Means algorithm is the fuzzy version of the K-Means algorithm. Unlike the K-

Means algorithm, this algorithm outputs the percentage ownership of each vector by each

cluster. For instance, a region can be 20% a part of region B and 80% a part of region C

(see figure 3.8).

The algorithm works in a very similar manner to the K-Means algorithm. Instead of one

ownership array (representing the ownership of the vectors in the space being clustered), it

has C ownership arrays. The values in the arrays are the percentage of ownership for the

vector by a cluster. Figure 3.8 illustrates how partial ownership of points by clusters could

be distributed in a single dimension clustering.

The initial centroid positions can be chosen randomly, or by one of the algorithms for

seeding the K-Means algorithm (see section 3.4.1). Every round the new locations of the

centroids are determined by using the average location of the vectors that are owned or

partially owned (in which case the contribution by the vector is weighted by its partial

ownership) by the centroid having its position calculated. This causes the C-Means al-

gorithm to produce different output to the K-Means algorithms (given the same starting

conditions) since the partial ownership by each cluster is used to calculate new centroid

30

Figure 3.7: This image demonstrates the problem that occurs when attempting to segment
two natural clusters (text and background) into three clusters (text, image and background)
via the K-Means or C-Means (see section 3.4.2) algorithms. When comparing the results
of the post-processed K-Means based algorithm in section 6, five segmentations of the
same image are used to determine the post-processed K-Means based algorithms average
accuracy. See appendix D for the full sized image.

31

Figure 3.8: This figure illustrates how the C-Means algorithm uses degrees of ownership
instead of absolute ownership (like the K-Means algorithm). The algorithm is executed in
the same way as the K-Means algorithm, the only difference in the execution is that degrees
of ownership are used to calculate new centroid positions.

positions. The C-Means algorithm also produces better results, especially when it is an

application requiring information with degrees of certainty. The C-Means algorithm runs

slower than the K-Means algorithm due to the increased number of operations required for

using C ownership arrays to calculate centroids.

This algorithm is used in similar conditions to the K-Means algorithm, especially when

an uncertainty value is necessary, or where more accuracy is desired at the expense of

computation time. C-Means is described in pseudo-code in algorithm 3.4.2.

Advantages of using the C-Means algorithm

The advantages of the C-Means algorithm are the following:

(1) The algorithm is fairly fast, although slower than the K-Means algorithm.

(2) The algorithm is very general, and is thus suited to a large number of clustering

applications.

(3) The algorithm is fairly simple to implement.

(4) There are a large number of expansions to the C-Means algorithm that can be made

in order to make it more accurate or faster[7].

32

Algorithm 3 The C-Means Algorithm
The principle of the C-Means algorithm is the following: for each point x in the space

being clustered into C clusters, there is a coefficient (uk(x)) giving the degree to which it

belongs in the k’th cluster. The sum of the coefficients for each point is generally 1, so

that uk(x) can be considered to be the probability to which the point belongs to cluster

k[66, 90]. The parameter m(> 1) is used as a weighting co-efficient for the fuzzy values.

When m is close to 1 the cluster center closest to an examined point is given a lot more

weight and the algorithm produces similar results to the K-Means algorithm.

∀x |
C∑

k=1

uk(x) = 1 (3.18)

uk(x) =
1

d(centroidk, x)
(3.19)

centroidk =

∑
x uk(x)

mx∑
x uk(x)m

(3.20)

where d(x, y) is the distance from the vector x to y.

(1) Choose the initial centroids randomly.

(2) Repeat

(.1) The degree to which points belong to clusters is calculated (shown in equation

3.19) and then normalised (using equation 3.18)

(.2) New centroids are calculated (using equation 3.20).

(4) Until (Ownership of points no longer changes)

33

(5) The C-Means algorithm works well when the data is naturally clustered.

(6) The C-Means algorithm produces more accurate results than the K-Means algorithm.

Disadvantages of using the C-Means algorithm

The disadvantages of the C-Means algorithm are as follows:

(1) The algorithm is not guaranteed to return a global optimum and may converge on

local maxima.

(2) Prior knowledge of a particular application is necessary in order to determine what

each cluster is (for example: determining whether a cluster is text, image or back-

ground).

(3) Since the algorithm needs to know the number of clusters to expect, situations can

occur in which there are fewer clusters than expected. This leads to incorrect results

[for example: an input image in which three clusters are expected (text, background

and image), but instead with text and background, but no image].

(4) Due to the random nature of the C-Means algorithm it is not entirely consistent.

(5) The quality of the final solution is largely dependent on the initial set of clusters. In

practice, the results may be much poorer than the global optimum.

(6) If the data is not naturally clustered, it may return strange results.

Chapter 4

An introduction to genetic programming

Genetic programming systems are artificial intelligence systems that attempt to evolve so-

lutions to a given problem. In the case of genetic programming, the generated solutions are

known as genetic programs. Problems are expressed to a genetic programming system in

terms of a heuristic function, which is used to rate individuals for the purpose of applying

natural selection, and the possible building blocks of the solution (known as primitives).

A description of the overall algorithm used by genetic programming systems to evolve

individuals (genetic programs) is given in the algorithm 4.

Algorithm 4 The steady-state control model
This algorithm is commonly used by genetic systems that follow the steady-state control

model. However, there are many variations of each step.

(1) Initialize the genetic system.

– Create the genetic population (or populations) and create the specified number

of individuals in each genetic population as randomly generated individuals.

(2) Determine the fitness value of every individual in the population.

(3) WHILE (termination criteria are not met [Eg. maximum number of rounds])

.1 Perform natural selection.

.2 Create a child by applying the genetic operators to parents selected in (3.1),

then remove the least fit individual from the population.

.3 Calculate the fitness of the new individuals created in step (3.2).

.4 Increment the round count.

(4) Return fittest individual in the history of the population.

34

35

4.1 Genetic populations

A genetic population is a collection of individuals. Populations may be of a fixed size, or a

variable size depending on the control model being used by the genetic system.

4.2 Genetic system control models

(1) Generational control model

The generational control model is the most common control model used by ge-

netic systems. The size of the population (or populations) is fixed throughout

the run and the number of generations is fixed. In every generation, a new pop-

ulation is created by the application of the genetic operators to the individuals

of the old population.

(2) Steady state control model

In the case of the steady state control model, the population (or populations) of

the genetic system are of a fixed size and there is not necessarily a set number

of generations. The system makes use of inverse selection methods for deter-

mining which members of the population are replaced[69]. Algorithm 4 shows

the basic working of a genetic system using the steady state control model.

(3) Varying population size model

In the case of the varying population size model, the population size is not

constant. The population (or populations) may shrink or grow to best suit the

state of the system. For instance, if the system nears an optimal solution, the

population size is decreased. However, if the system nears a local optimum, the

size of the population is increased to maintain genetic diversity[69].

4.3 The representation of individuals

Genetic programming systems most commonly encode individuals in the population as

parse trees. Other methods of encoding individuals include a linear encoding and a graph

encoding. All representations have their advantages in different situations. The graph type

36

representation in particular is suited to applications which involve recursion, looping and

more complex control structures[30, 70]. The linear structure has been shown to converge

to solutions very quickly, but lacks the complexity of the other representations[69]. The

implemented genetic system makes use of parse trees, so parse trees shall be focused on in

the discussion of genetic programming.

4.4 The primitives

Individuals in genetic populations are represented as structures composed of building blocks

known as primitives. The leaf nodes of the genetic individuals’ tree are known as termi-

nals. The valid terminals (as defined by the problem description to the genetic system) in

a genetic system are known as the terminal set. The non-leaf nodes of the tree are known

as function nodes. The valid function nodes (as defined by the genetic systems problem

description) in a genetic system are known as the function set.

It is in terms of the primitives of the genetic system that the possible solutions (genetic

programs) must be written. The set of primitives must be chosen to satisfy Koza’s[53]

closure and sufficiency properties. A set of primitives is said to satisfy Koza’s sufficiency

property if it is possible to express the solution to the problem in terms of the primitives,

however, care should always be taken not to include unnecessary primitives since they will

increase the size of the search space. To satisfy Koza’s closure property, the function set

must accept all possible input from other function and terminal primitives[69].

4.5 The terminal set

The terminal set generally represents input data to the system, constants, functions with an

arity of zero, or state variables (variables that are internal to and managed by the genetic

program, such as variables for looping).

4.6 The function set

Elements of the function set take as input their arguments (the child nodes of the function

node in the tree). The number of arguments that a particular function takes is known as the

functions arity (for example: addition would have an arity of 2).

Examples of common functions include:

37

(1) Mathematical functions such as addition, subtraction, multiplication and division

(2) Loop statements such as ”REPEAT...UNTIL”, ”FOR..DO”

(3) Binary operations such as AND, OR, NOT, XOR

4.7 Fitness cases

In genetic systems, the training set usually comprises a number of input variables and

desired resulting values achieved by combining the input variables in a logical or math-

ematical manner (such as decision making processes or mathematical equation creation).

The input values and desired resulting values for a genetic system are collectively referred

to as fitness cases. The desired resulting values are often observed values that the genetic

system attempts to find a way of emulating in order to solve a particular problem.

4.8 The evaluation of individuals

The fitness function calculates the fitness of the individuals in the population by interpret-

ing the individual’s parse tree with all of the available fitness cases[64]. This is done by

substituting the values in the terminal inputs in the individual with the corresponding values

from the test case being examined, and evaluating the individual by applying the function

nodes to the terminal nodes in a traversal (since the terminal nodes now have values from

the test case) and then determining the resulting value of the individual. The resulting value

is then compared to a target value (in the fitness case) as a part of determining the fitness

of the individual.

4.9 The fitness function

When determining fitness, the output of the genetic individual for each set of input data is

compared to the corresponding desired result for that input data (see fig. 4.1). The raw fit-

ness can then be calculated in a variety of ways, depending on what is most suitable to the

problem. In some cases the distance from the correct answer is used and summed up to rep-

resent the fitness (commonly used in mathematical problems, such as in fig. 4.1), whereas

in other cases the number of correct or incorrect answers is summed up (commonly used in

38

decision making processes). The following are some of the fitness measures that are used

to compare genetic individuals[69]:

– R represents raw fitness.

– MR represents the maximum raw fitness attainable.

– S represents standardised fitness.

– A represents adjusted fitness (see equation 4.1).

– If lower values of R represent more fit individuals then S(i, t) = R(i, t).

– If higher values of R represent more fit individuals then S(i, t) = MR −R(i, t).

A(i, t) =
1

1 + S(i, t)
(4.1)

Figure 4.1: An example of fitness being calculated from input values, the desired result and
the actual result. The sum of the distances between the desired and actual result over the
test cases is used to determine the overall fitness of an individual.

39

4.10 Selection and inverse selection methods

There are a variety of methods by which selection and inverse selection can be performed.

The method of selection or inverse selection is best chosen with the particular application

in mind.

(1) Tournament selection

N individuals from the population are selected at random. N is referred to as

the tournament size, greater tournament sizes cause greater selection pressure.

The fitness’s of the individuals in the tournament are calculated and the individ-

ual with the best fitness is selected. The rest of the individuals in the tournament

are replaced with individuals created via the use of the genetic operators[2].

(2) Fitness proportionate selection

For each individual in the population, the probability that the individual will

be copied into the next generation can be calculated by equation 4.2 where

f(si(t)) is the adjusted standardised fitness of the individual (see equation 4.1).

Individuals that are not copied into the next generation are replaced by new

individuals created via the genetic operators[69].

f(si(t))∑j=1
M f(sj(t))

(4.2)

(3) Linear ranking

In the case of linear ranking, there is no fixed number of individuals that are

copied forward each iteration. An individual, Ind, has a probability, Pr(Ind)

of being removed that is calculated as follows (where individual fitness rank is

expressed as IFR(Ind) and number of individuals in the population is denoted

Nbrp):

Pr(Ind) =
IFR(Ind)∑(Nbrp)
i=1 IFR(i)

(4.3)

For example:

40

In the case of individuals with the following fitnesses (where lower fitnesses are

better): 120,50,66,79,84,150

They would have fitness ranks 6,1,3,2,4,5,7

(ΣNbrp
i=1 IFR(i)) = 28

So their probabilities of being chosen for replacement would be 6
28
, 1

28
, 3

28
, 2

28
, 4

28
, 5

28
, 7

28
,

respectively.

4.11 Genetic operations

Once the selection process is performed, individuals in the population are copied forward

to the next generation (via application of the genetic operators). The genetic operators are

described in the following subsections.

4.11.1 Reproduction

Reproduction (see fig. 4.2) is a straight copy of an individual into the following generation.

(1) The input tree is copied to what will be the output tree (tree C)

(2) Tree C is returned.

Figure 4.2: Reproduction takes one individual as input and performs a straight copy into
the next generation. It is not necessary to re-calculate the fitness of these individuals.

41

4.11.2 Mutation

Mutation is a genetic operator that is used to introduce completely new genetic material

into a population. Mutation acts upon a single tree and produces a single tree as output (see

fig. 4.3)[2]:

(1) The selected parent tree is copied to what will be the output tree (tree C)

(2) A node from tree C is selected at random.

(3) The selected node and its sub-tree are deleted from tree C.

(4) A new sub-tree is then randomly generated at the position of the deleted node in tree

C.

(5) Tree C is returned.

Figure 4.3: Mutation takes one individual as input and randomly selects a node to undergo
mutation. That node and its children are replaced with a random sub-tree.

4.11.3 Crossover

Crossover generally creates two new individuals from two parent individuals. This operator

is the main operator used in genetic programming as it combines individuals that have most

likely undergone evolution[2]. Crossover acts upon two parent trees and produces two trees

as output (see fig. 4.4):

42

(1) A node is selected at random from tree A (the first input tree) and tree B (the second

input tree).

(2) The selected nodes are swapped between tree A and tree B, yielding output tree C

and output tree D.

(3) Tree C and tree D are returned.

Figure 4.4: Crossover takes two individuals as input and chooses a random node from
each one. The two chosen nodes and their sub-trees are then swapped between the two
individuals, giving an output of two new individuals.

4.12 Termination criteria

The termination criterion of a genetic system is the condition that is required to be met

before the evolution of a genetic system legally ends. This condition usually takes the form

of a number of rounds, a fitness threshold, or simply if a solution is found (in terms of the

Heuristic function).

43

4.13 Population initialisation

For each population, the specified number of individuals is randomly generated at the start

of the run from the terminal and function set (see section 5.1.8 and 5.1.10). The individuals

in the population usually have some sort of limit imposed on them in terms of a limit

on their number of nodes or depth. The individuals in the populations can be created as

follows:

(1) The full method

Each individual in the population is randomly generated to its maximum depth.

Only function nodes are chosen to form the tree up to the maximum depth.

At the maximum depth random terminal nodes are chosen. See figure 4.5 for

examples of individuals created using the full method.

Figure 4.5: This figure shows individuals created with the full method.

(2) The grow method

Trees generated by the grow method are of random shape and are generated up

to the set height limit of the trees (to a maximum depth or number of nodes).

Every node in the tree is randomly chosen out of the primitives so any tree shape

can occur (within the limit of the set maximum and minimum depths). Nodes

at the maximum depth are always chosen as terminals. It is common to use a

growth factor of some sort when growing or mutating trees. The growth factor

indicates the likelihood that a function node will be chosen or a terminal node.

In cases where there are far more possible terminal nodes than possible function

nodes, the trees can be expected to be very small if the tree was generated

44

entirely at random out of the primitives, or very large in the other extreme case.

Using a growth factor to control the probability of terminal and function nodes

being chosen solves this problem. See figure 4.6 for examples of individuals

created using the grow method.

Figure 4.6: This figure shows individuals created with the grow method.

(3) Ramped half-and-half

The ramped half-and-half method of population generation entails the genera-

tion of 50% of the individuals by the grow method, generated with maximum

depths split evenly between two and the set maximum depth for the system,

and 50% of the individuals generated by the full method, with maximum depths

split evenly from two and to the maximum depth for the system. Genetic pro-

gramming systems using the ramped half-and-half method have been found to,

on average, produce better results than genetic programming systems using the

grow or full methods of population generation[69].

4.14 Parallel populations

When using parallel populations, the population space is subdivided into multiple sub-

populations (or demes). Using multiple parallel populations has been shown to increase

the odds of finding a good solution (over using a single population) since it limits the

probability of the genetic system getting stuck at a local optima. This is because genetic

diversity is maintained by population migrations. In terms of the simulation of actual evo-

lution, this is a slightly more realistic approach. Figure 4.7 shows the fitness over time of

four populations running in parallel.

45

There are a number of ways in which the parallel populations could be generated. The

individuals in the populations could be randomly generated with or without certain cri-

teria for each population (for example, certain populations could get a certain subset of

primitives).

Population migrations (see fig 4.8) significantly help to decrease the chance that the sys-

tem will prematurely converge as new individuals are being introduced into the populations

that have already undergone evolution (and are thus generally fitter than randomly mutated

individuals). The decrease in population stagnation by replacement with good individuals

from other populations results in better genetic runs. Population migration can take place

once in every few generations, or a set number of times in a run[2]. See algorithm 5 for

details.

Figure 4.7: This image shows the max fitness versus generation of three genetic populations
running in parallel. The left image shows the top fitness of each population during the
genetic run for creating individuals to extract the image segment. The right image shows
the top fitness of each populations during the genetic run for creating individuals to extract
the text segment.

Algorithm 5 Population migration can be performed as follows:

(1) if ((roundNumber+1) MOD migrationFrequency == 0)

for (i = 0 to migrationSize)

.1 Choose two different populations at random (populations A & B)

.2 Swap a random individual from population A with a random individual from

population B

46

Figure 4.8: This image demonstrates how individuals could be exchanged between popula-
tions via population migration.

Chapter 5

Systems implemented

5.1 Genetic system

There are several problems with segmenting a document image by clustering the Haral-

ick feature space with the K-Means algorithm. These problems can be improved upon or

removed entirely by combining the K-Means segmentations with genetic programs:

(1) Due to the random nature of some of the seeding methods employed by the K-Means

algorithm and some other clustering algorithms, the clustering does not always return

consistent results. The genetic programs make use of fixed centroids that they have

been trained with for clustering data, causing the genetic programs to return more

consistent results.

(2) It is difficult to determine which cluster is which in many cases (ie. which cluster is

text, which is image and which is background). In some cases it is possible to hard

code into the application which cluster is which (for instance high contrast areas in

document image segmentation generally represent text). However, for features like

the mean, it is a lot more difficult to tell which cluster is which. Keeping the K-Means

clustering centroids constant and training genetic programs for recognising particu-

lar segments (ie. training one genetic program to segment graphics and another to

segment text) solves this problem.

(3) Genetic programming could be used to find the more useful features to use for clus-

tering, thereby eliminating the need to calculate unnecessary Haralick features.

(4) Genetic programming could be used to improve upon K-Means outputs by attempting

to find an optimal combination of K-Means segmentations, improving the segmenta-

tion accuracy (since noisy features will be eliminated).

(5) In cases where there are fewer clusters than expected, clustering methods that ex-

pect a set number of clusters (such as K-Means) can be very unsuitable since such

47

48

methods often end up attempting to split one of the clusters. In document image pro-

cessing, this can occur when the K-Means algorithm expects an image to have three

naturally clustered segments (text, image and background) and instead receives an

image with only two segments (background and text). In such cases, large parts of

the background and/or text regions are often misclassified as belonging to the image

region. This issue can be overcome by using trained genetic programs with set clus-

tering centroids. In the case of set clustering centroids, if no data is sufficiently near

a centroid, that cluster will simply not exist.

5.1.1 The concept

Some Haralick features are not relevant for segmenting text and/or images. Clustering

using irrelevant features is likely to cause inaccuracy. On the other hand, there are features

that are good for extracting images (such as mean), while others are better for extracting text

(such as variance). In this dissertation, a method is proposed by which the segmentation of

image and text are separated to increase segmentation accuracy and the most useful features

for segmentation are determined for each segment.

The system combines Haralick features by a number of operators in order to get better

results. For instance; one Haralick feature could successfully segment the image compo-

nent, but at the same time extracting some of the text. This could then be combined with

a Haralick feature that extracts text alone. This will then allow us to extract the image

segment correctly by removing the text component. The idea is that by combining different

features for each component, an extraction of one of the components (for instance text)

would yield a far better segmentation.

49

Algorithm 6 Applying the genetic segmentation algorithm (see section 5.1.3 and figure 5.1

for additional details on input and output):

(1) Read the genetic program created by the genetic system to segment the document

image from the input file.

(2) Perform quick-clustering of each (Haralick feature, angle, distance) triple that is

used in the genetic program (This is discussed in section 5.1.2).

(3) Input the clusterings used by the genetic program to the genetic system.

– The genetic program (from step 1) is applied, using the input clusterings as

input for the relevant terminals. The genetic program returns the resulting seg-

mentation (which is the segmentation of one component).

(4) Perform step 3 for the second component (the first component is the image compo-

nent, the second component is text).

(5) Combine the two segmentations. In the case of a region being considered to be both

a text region and an image region, the region is considered to be ’fuzzy’ and is dealt

with by the post-processor.

(6) Post-process the segmentation.

(7) Return the segmentation.

50

5.1.2 Quick clustering

This clustering is performed to generate input for the genetic image-segmentation algorithm

(as shown in step 2 of algorithm 6). The algorithm simply clusters data around the cluster-

ing centroids which are stored along with the genetic programs (the same centroids used to

segment images for training). The centroids do not change position as in the C-Means or

K-Means algorithms. The application algorithm does not use the K-Means algorithm at all

since it has set clustering centres. The K-Means algorithm is only used to generate training

data for the genetic system.

5.1.3 The training module

The training module (see fig. 5.2) takes as input the training set. The training set consists

of human input (the ideal segmentation) and the segmentations of the document image

via the K-Means algorithm on single Haralick features (see section A.5.2 for details). As

output, the training module produces two individuals; one individual is an algorithm for

extracting the image component of a document image, the other component is the algorithm

for extracting the text component of the document image (see A.5.3 for details). In order

to increase the accuracy of the process and to allow the system more freedom in terms of

the operations it may use, the training module performs two separate genetic runs so each

run may focus on the extraction of either the text component or the image component.

5.1.4 The segmentation module

For the segmentation of an input image, the algorithm takes as input a genetic program

for the extraction of the text component, a genetic program for image extraction, and the

Haralick feature space of the image. The algorithm then segments the image accordingly,

producing the segmented text component and image component as output. These outputs

are then post-processed, which yields the final output of the segmentation (see figure 5.1).

5.1.5 The genetic parameters

Table 5.1 lists the genetic parameters for the system. The system uses the steady state con-

trol model, with multiple populations. The populations are generated via the grow method,

with ”Mutation population generation growth” specifying the likelihood of a child node

51

Figure 5.1: The input and output of the segmentation module.

Figure 5.2: The input and output of the training module.

52

generated by mutation being a functional node and having children. ”Population migration

size and frequency” specifies how often individuals cross over between populations. The

termination criteria for the genetic system can be given as a desired fitness (for instance a

1% misclassification rate) as well as a maximum number of iterations. The system stops

and returns its results once either of the termination criteria is met.

The default parameters have been chosen with a balance of speed and accuracy in mind.

It was found through experimentation with the system that a maximum individual height of

3 or 4 was most efficient in terms of providing good results and lower execution (and eval-

uation) times. Maximum individual heights of greater than 4 tend to increase the size of the

search space drastically, causing great increases in training time. The training system also

takes a longer time to evaluate solutions with very large amounts of terminals, due to the

number of calculations involved when combining the training segmentations. Populations

with maximum heights of less than 3 force the individuals to be too simple, resulting in

fewer good solutions in the search space.

A maximum round count of 4000 was found to be long enough for a population of 50

to converge. 50% growth was found to provide a good variety of parse tree shapes. 95%

crossover and 5% mutation have been chosen as defaults since the combination tends to

provide good results from the system since much more than 5% mutation tends to make the

search needlessly random, while less than 5% lacks sufficient introduction of new genetic

material.

53

Table 5.1: The default genetic parameters for the system. These values are used as de-
faults since they provide a good balance between speed and genetic diversity. These
default parameters were determined by experimenting with various combinations of pa-
rameters. The experimentation was performed with the aim of obtaining good fitnesses
in a short timeframe.

Parameter Value
Crossover % 95%
Mutation 5%
Maximum height 3
Minimum height 0
Termination criteria numrounds 4000 generations
Termination criteria fitness (greater than) 100%
Control model Steady state
Population initialization method Grow
Genetic system seed RANDOM
Maximum clones 3
Number of populations 3 (in parallel)
Individuals per population 50
Population migration size and frequency 1 every 3 rounds
Mutation & population generation growth % 50%

54

5.1.6 The training set

In the case of the implemented genetic system, there are a large number of input values

observed. These input values are the results of the segmentation of a training document

image into three segments (text, image or background). For the desired result input, the

desired membership of each region to a particular segment is used (see figure 5.2). The

training set usually consists of a few thousand region classifications, depending on the size

of the image used for the training.

The implemented system uses segmentations acquired by clustering combinations of

Haralick features, angle and distance using the K-Means algorithm for the training sets’

observed values. The desired output from the system for the sets of input is given by the

user as described in section 5.1.7. The desired segmentation output values for the training

document image are used to determine the fitness of individuals.

5.1.7 Human input

User input(see figure 5.3 for an example of the training) is chosen to evaluate the individuals

in the genetic population since text and image regions are human constructed concepts, and

the qualitative evaluation of segmentations is performed by the user. As a result, humans

would be able to provide better segmentations than document image segmentation software.

The alternative method for creating training data is to use an existing segmentation

algorithm. However, there is no perfect solution to the texture based segmentation, and it

would be likely that the system would be trained with flawed data, resulting in the system

simply attempting to emulate another algorithm along with its flaws. When trained using

human expert-input, the system attempts to solve the problem in terms of the way humans

segment document images. With human training input, the system is also given a lot more

flexibility when attempting to train for specific texture types, such as ones not in the field

of document image segmentation.

55

Figure 5.3: The creation of a benchmark segmentation using the GUI tool. The image is
displayed in grey scale and areas are highlighted by the user according to which segment
the area belongs to. White blocks indicate background, green blocks indicate image, blue
blocks indicate text, yellow blocks indicate uncertainty between background and image,
and purple blocks indicate uncertainty between background and text. This information is
then saved to a file along with the Haralick feature segmentations and the original image.

56

5.1.8 The terminal set

For the terminals of the genetic system, indexes to different possible Haralick feature seg-

mentations are used. When the genetic program is run, the quick clustering algorithm is

used to perform the clusterings as described in algorithm 6. The terminals comprise of

all the simple combinations of Haralick features (the eight Haralick features discussed in

3.3.4), angles (0o, 45o, 90o, 135o) and distances (1 or 2). Our terminals are triple: (feature

name, angle, distance). For example: (Contrast, 45, 1), (Energy, 90, 2), (Mean, 0, 1).

In terms of the fitness function evaluation, the terminals represent the resulting values

of a segmentation of the test image via a single Haralick feature (for example this could

be contrast at angle 45 degrees at distance 1). The observed values of each segmentation

after the K-Means clustering are 0, 1 or 2 for the image, text and background segments.

The K-Means algorithm is only used for training input, not in the application of the genetic

program.

In order to allow our system more flexibility, the use of faster computations, and input

data that is more relevant to decision making[71, 83, 84]; binary observed values are used

(instead of observed values of 0,1 and 2). To do this, each resulting segmentation is split

into two segmentations with possible values of 0 or 1 (the process of splitting is further

described in section 5.1.9).

As far as the representation of the terminals is concerned, each of the two binary seg-

mentations maps of the initial segmentation from the Haralick/K-Means algorithm [eg.

(IDM, 45, 1)] are known as ’splits’ (with segmentations being split for training, as de-

scribed in the previous paragraph). In the case of the terminals, the split is represented

by the split parameter. The split parameter may have a value of 0 or 1 to denote the two

different splits of the observed values [eg. (IDM, 45, 1,0) and (IDM, 45, 1,1)]. The final

representation of the terminal values is as follows: (feature name, angle, distance, split

parameter).

As far as the semantics of the terminals are concerned, when running a genetic program

that has undergone training via the genetic system on other document images, the program

would interpret the terminal value (Contrast, 45, 1, 0) as the quick clustering segmentation

of the new document image using the Haralick feature contrast at 45o and distance one. It

would then, since the split parameter is 0, interpret all the values of 1 as 1 and all other

values (0 or 2) as 0.

57

5.1.9 The splitting of training and input data

The input training data is split into two binary arrays (for use by the binary functions) as

illustrated in figure 5.4. This new representation encodes the mapping of the image, text

and background segments into a binary format. This is done as follows:

f : {0, 1, 2}N×M −→ {0, 1}N×M × {0, 1}N×M

I
−→ (I1, I2)

f(I)(x, y) = (0, 0) if I(x, y) = 0

f(I)(x, y) = (1, 0) if I(x, y) = 1

f(I)(x, y) = (0, 1) if I(x, y) = 2

Figure 5.4: Translation of segmentation data from a {0, 1, 2}N×M segmentation to two
{0, 1}N×M segmentations. Fuzzy training values of 3 (image or background) and 4 (back-
ground or text) are not taken into account when genetic programs are evaluated, and only
apply when a genetic program is being trained.

58

5.1.10 The function set

Boolean operations have been chosen as the function set as they lead to fast computations.

This is a valuable property in the context of genetic systems due to the very large number

of computations that are carried out when determining the fitness of individuals. Boolean

operations are also a logical choice due to the decision making nature of the problem (since

a true or false result is required when determining whether or not a block belongs to a

segment).

The functions act upon between 1 and 3 terminals as described below and as graphically

illustrated in figure 5.5

Figure 5.5: Graphical representation of the boolean function set.

AND

AND acts upon two input values, producing an output value equal to the binary AND of the

two input values. If both values are equal to 1, then the output has a value of 1, otherwise

the output has a value of 0. This function has the effect of combining two possibly over-

sensitive (in terms of giving false positives) terminals together into a more useful result.

OR

OR acts upon two input values, producing an output value equal to the binary OR of the

two input values. If both of the input values are equal to 0, then the output has a value of

59

0, otherwise the output has a value of 1. This function has the effect of combining two

possibly under-sensitive (in terms of giving false negatives) terminals together into a more

useful result.

XOR

XOR acts upon two input values, producing an output value equal to the binary XOR of

the two input values. If exactly one of the input values are equal to 1, then the output has a

value of 1, otherwise the output has a value of 0.

NOT

NOT acts upon one input value, producing an output value equal to the binary NOT of the

input value. If the input value is equal to 1, then the output has a value of 0, otherwise

the output has a value of 1. This operation has been chosen for inverting input values to a

possibly correct value.

TRIO

TRIO acts upon three input values, producing the output value as the value that is in the

majority for the three input values.

The evaluation of individuals

The fitness function will combine the K-Means Haralick segmentations from the input

according to the genetic program and determine the results. The results are then compared

to the ideal result for the test case and then the distance from the correct result is returned

(see example 7).

60

Example 7 Parse tree evaluation
For example a parse tree of the form:

(Mean, 0, 1, 1) XOR ((Contrast, 45, 1, 0) OR NOT (TRIO ((Energy, 90, 2, 1), (Correlation,

0, 1, 1), (Energy, 135, 1, 0))))

where (Mean, 0, 1, 1), (Contrast, 45, 1, 0), (Energy, 90, 2, 1), (Correlation, 0, 1, 1),

(Energy, 135, 1, 0) in the test case have values 1, 0, 1, 1, 0 respectively will evaluate to

1 XOR (0 OR NOT (TRIO (1, 1, 0)))

1 XOR (0 OR NOT (1))

1 XOR (0 OR 0)

1 XOR 0

RESULT = 1

this value is then compared to the fitness case to determine distance

DISTANCE = ABS (DESIRED VALUE - RESULT)

if our DESIRED VALUE = 0

DISTANCE = ABS (0 - 1)

DISTANCE = 1

This distance is then added to the sum of the distance of the individuals results from the

correct answer (their fitness).

61

5.1.11 The representation of individuals

The content of each node is represented as a string in this implementation (for example:

AND, OR, NOT, or some number indexing a segmentation). Each node also contains a

count of the number of child nodes it has and references to its child nodes. This is illus-

trated in figure 5.6. See figure 5.7 for an example of some individuals in the population.

Representations 8 and 9 describe the composition of individuals and populations in the

system respectively.

Representation 8 Individuals in the population are represented as follows:

TREE class:

(1) A pointer to a root node.

(2) Fitness calculation capabilities.

(3) Self copying capabilities.

(4) Self output capabilities.

(5) Capabilities to return a pointer to a random node in the tree.

NODE class:

.1 A string representing the contents of the node.

.2 An integer (N) representing the number of children the node has.

.3 An array of [0..N] pointers to child nodes.

5.1.12 The fitness function

The fitness function uses the desired segmentation specified in the input file for the training

image (the desired result for the test cases) and then compares it to the result achieved by

the evaluation of each individual with the test cases. The function then returns a fitness,

in this implementation the percentage of correct classifications is used when determining

fitness.

When determining fitness, the program runs through all sets of input values and calcu-

lates the results from the genetic program (see fig. 4.1). The result is then compared to the

corresponding desired value for the inputs (see fig. 5.8).

62

Representation 9 Populations are represented as follows:

POPULATION class:

(1) An integer (N) representing the number of individuals in a population

(2) An array of [0..N] pointers to individuals in the population.

(3) An integer representing the maximum fitness of the population.

(4) A function which performs an evolutionary step for the population.

(5) Functions to perform the genetic operations (mutate, reproduce and crossover)

(6) A function for displaying the entire population

Figure 5.6: Illustrates the representation of the genetic trees to the program.

63

Figure 5.7: Final output of some of the genetic programs created.

Formally, the fitness of individuals is calculated as follows (where Fi is the fitness of

individual i, Nc is the number of fitness cases, Ra is the achieved result and Rd is the

desired result):

Fi = 1 −
∑Nc

j=1 |Ra −Rd|
Nc

(5.1)

Figure 5.8: This is an example of fitness cases for this application. In this table the values
going down the columns are for the observed values (each square segmented in the image
moving across the page from left to right then to the following row). The 3rd and 2nd to
last columns are the output and desired values for that square of the segmentation. Input 1
to 144 are observed values of the segmentation by (featurename,angle,distance,split).

64

5.1.13 Finishing off

Once the genetic system has found a suitable individual for segmenting the image and a

suitable individual for segmenting the text, the genetic programs will be saved to a file for

recall for segmenting other document images (as described in algorithm 6).

5.1.14 Example training and segmentation

The following figures (5.9,5.10,5.11 and 5.12) show the training of genetic program G527

and some example segmentations. The input data for the training is shown in figure 5.3.

The original image 527 used for training can be found in appendix C.

Figure 5.9: This image shows the genetic parameters for the creation of the genetic program
used in the following images. The genetic program itself (which shall be referred to as
G527) is shown in the centre output and the generations on which the best genetic program
was improved over are shown in the right output.

65

Figure 5.10: These images demonstrate the training process as it progresses. The top pair
of images are the image and text components segmented by the best genetic program at
generation 1. The middle pair of images are the image and text components segmented by
the best genetic program at generation 3808. The bottom pair of images are the image and
text components segmented by the best genetic program at generation 10785. Red blocks
indicate incorrect classification, whereas blue regions indicate the region being classified
as part of the text component and green regions indicate the region being classified as part
of the image component. Black regions do not belong to the component being extracted.

66

Figure 5.11: The left image is image 527 segmented by the genetic programming based
system (program G527). Image 527 is the image that was used to train the genetic program
being used. The right image is image 528 segmented by the genetic programming based
system (program G527). A full sized version of this image can be found in appendix E. The
original unsegmented images can be found in C.

67

Figure 5.12: The left image is image 531 segmented by the genetic programming based sys-
tem (program G527). The right image is image 533 segmented by the genetic programming
based system (program G527). A full sized version of this image can be found in appendix
E. The original unsegmented images can be found in C.

68

5.2 Comparison system

In order to test the proposed genetic programming based system, it was necessary to im-

plement a system to test it against that uses a standard approach to document image seg-

mentation. The system performs segmentations by making use of the K-Means algorithm

to cluster the Haralick feature space of a document image. The results of the K-Means seg-

mentation are then post-processed (as described in section 5.3). The post-processing used

on the GLCM/K-Means based algorithms’ results is the same as the post-processing used

upon the genetic programming based systems’ results. Example segmented images can be

found in appendix D.

Figure 5.13: The process by which document images are segmented by the system used for
comparison.

The following Haralick features (at angles 0o, 45o, 90o, 135o and distances of 1 and 2)

69

are clustered when performing the segmentation:

– Contrast

– Energy

– Entropy

– Maximum probability

– Inverse difference moment

– Correlation

– Mean

– Standard deviation

5.3 Post-processing

Texture classifiers themselves generally do not make use of surrounding regions for de-

cision making, they simply classify the texture being examined by itself. The task then

falls upon post-processing to apply domain specific knowledge and perform clean-up of

the segmentation. It is, however very important to note that the input information to the

post-processing needs to be fairly accurate, otherwise the post-processing is worthless.

Post-processing is an important step for document image segmentation systems since there

is a large amount of domain specific knowledge that can be applied. For example:

(1) Text regions generally take on a rectangular shape and need to be more than one or

two units wide (with 16x16 texture windows).

(2) Image regions generally take on a rectangular shape and need to be more than one or

two units wide and high (with 16x16 texture windows).

(3) Text and image generally do not appear in very small amounts (noise), or surrounded

by other non-background components (text or high contrast regions in images, or

image surrounded by text as a result of noise).

70

Figure 5.14: This image is the initial segmentation of fig. C.1 by the genetic programming
based system. No post-processing has been performed. Red regions indicate indecision
between the text and image components, blue indicates that the region belongs to the text
component and green indicates that the region belongs to the image component.

71

Figure 5.15: This image is the segmentation of fig. C.1 by the genetic programming based
system. Pass 1 has been performed. Blue indicates that the region belongs to the text
component and green indicates that the region belongs to the image component.

72

5.3.1 Pass 1: fuzzy class removal

This process removes the fuzzy class from the output by replacing regions classified as

being uncertain with their most likely class. This is done by connected component analysis

of the fuzzy class and then making the class decision based on the neighbourhood of that

component. See fig. 5.15 for the resulting segmentation and fig. 5.14 for the image in its

raw segmented form. Algorithm 10 describes the steps taken for the first post-processing

pass.

Algorithm 10 Pass 1:

(1) Perform connected component analysis on all fuzzy regions.

(2) Label each fuzzy region.

(3) For each connected fuzzy region.

(.1) Determine number of squares surrounding the fuzzy region that belong to the

image and text components.

(.2) Set the entire fuzzy region to a text or image region, depending on what sur-

rounding component is in the majority.

73

5.3.2 Pass 2: text component clean-up

This process removes weak connections (often caused by noise) between text components.

This is done to separate columns of text. The method for this step entails using vertical

line scans to find weak connections within a connected component. This process is only

applied to the text class. Also, if a text connected component is one column wide, it can

be considered to be noise and is replaced by the component which is in the majority of

its neighbourhood. This is because text components do not appear in vertical lines, and

because border lines in document images are often confused with text components since

they share certain characteristics. In the case of the example image’s segmentation there

were no weak connections. Algorithm 11 describes the steps taken for the second post-

processing pass.

Algorithm 11 Pass 2:

(1) Perform connected component analysis on all text regions.

(2) Label each connected text region.

(3) For each connected text region.

(.1) Perform line scans from the left to the right of the connected text region, sum-

ming the number of squares that belong to the connected text region along each

column.

(.2) If the column with the smallest number of squares has less than 50% of the

number of squares that the column with the second smallest number of squares

has, then the smallest column can be considered to be noise. In the case of a

noise column being found, the component is split into a left region and a right

region.

(.3) If the text connected component is one column wide it is replaced with the

component that is in the majority in its immediate neighbourhood.

74

5.3.3 Pass 3: noise culler

Figure 5.16: This image is the initial segmentation of fig. C.1 by the genetic programming
based system. Passes 1, 2 and 3 have been performed. Blue indicates that the region
belongs to the text component and green indicates that the region belongs to the image
component.

This process culls noise components. This is done by finding all connected components

and then replacing the components of a size smaller than a certain threshold with the class

they most likely are. This is determined by the amount of each class in the immediate

neighbourhood of the connected component. See fig. 5.16 for the resulting segmentation.

See algorithm 12 for the steps taken during the third post-processing pass.

75

Algorithm 12 Pass 3:

(1) Perform connected component analysis on all regions.

(2) Label each connected region.

(3) For each connected region, if the region is smaller than a certain threshold:

(.1) Determine number of squares surrounding the region that belong to each com-

ponent.

(.2) Set the connected region to a text, background or image region, depending on

what surrounding component is in the majority.

76

5.3.4 Pass 4: block assignment

Figure 5.17: This image is the segmentation of fig. C.1 by the genetic programming based
system. Pass 1,2,3 and 4 have been performed. Blue indicates that the region belongs to
the text component and green indicates that the region belongs to the image component.

This process expresses the segmentation map in terms of square areas. This is done

because image and text blocks usually appear in rectangles. See fig. 5.17 for the resulting

segmentation. This form of post-processing is not performed by default. Algorithm 13

describes the steps taken during this pass.

77

Algorithm 13 Pass 4:

(1) Perform connected component analysis on all regions (including background).

(2) Label each connected region and determine each connected region’s bounding rect-

angle (the set of bounding rectangles is known as BR). The bounding rectangles are

used to determine which regions overlap and which regions are contained within each

other.

(3) For each connected region, if there is another connected region inside the bounding

rectangle:

(.1) Split the two clashing bounding rectangles into however many pieces are nec-

essary, such that the ’clash’ region is no longer part of the bounding rectangle.

This entails deleting the two clashing rectangles from BR and adding all of the

new bounding rectangles resulting from the split to BR.

(.2) Copy the region of the image where there is a clash between the two connected

components bounding rectangles into a smaller array SX.

(.3) Perform connected component analysis on SX.

(.4) Label each connected region and determine each connected region’s bounding

rectangle. Add the bounding rectangles to BR.

(.5) For each connected region, if there is another connected region inside the

bounding rectangle:

(.1) Determine which of the two regions in the overlapping region are in the

majority.

(.2) The region that is in the minority in the overlapping region has its bound-

ing rectangle split into however many necessary smaller rectangles such

that the region that is overlapping may be removed. This entails deleting

the minority rectangle and adding all of the rectangles resulting from the

minority rectangle being split so as to no longer clash with the majority

rectangle.

(4) Draw all bounding rectangles in BR.

Chapter 6

Experimental results and discussion

6.1 Data set

391465 sub-images from thirty-two large document images (taken from the MediaTeam

document image database [1]) were classified by six different algorithms (five genetic pro-

grams and the K-Means/GLCM based algorithm) in order to test the accuracies of the

genetic programs and the post-processed K-Means algorithm. The images were all chosen

to contain text, background and image components (since the K-Means based algorithm at-

tempts to cluster the data into three segments). The thirty-two document images have each

been segmented with the five separately created genetic programs, and each document im-

age has been segmented five separate times with the post-processed K-Means algorithm.

Five separate runs of the post-processed K-Means based algorithm are performed on each

image in order to determine the post-processed K-Means based algorithm’s average ac-

curacy, since separate runs of the post-processed K-Means based algorithm can produce

different results.

The document images are taken from a large variety of sources, resulting in a variety

of Haralick features distributions (this is done in order to make the job of the genetic pro-

gramming based segmentation algorithm more challenging). The bulk of the input images

are scanned newspaper images (see appendix C) since:

– Newspaper document-images have a fair amount of background, text and images.

– Scanned images are generally very noisy and newspaper quality printing and paper

makes the job of the classifiers somewhat more difficult.

– The processing of scanned newspaper images for the purpose of archiving is one of

the major applications of such classifiers.

78

79

6.2 Genetic program creation

Five different sets of training data were used when training the genetic programs. For

each set of training data, multiple genetic programs were created. Out of those genetic

programs, one was selected for each set of training data. This resulted in five different

genetic programs (for comparison with five runs of the K-Means based algorithm) created

from five different sets of training data. Each genetic program is named after the document

image used for its training. The five genetic programs have been tested extensively in order

to show the different results from the different segmentation algorithms.

When training the genetic programs in table 6.1, care was taken in choosing images

which provide a good general example of how text (both title text and regular text), back-

ground and images look like on average. Well trained genetic programs are very rarely

outperformed by the post-processed K-Means algorithm on the image that the genetic pro-

gram was trained on. The genetic programs’ performance on other images depends on how

similar the training image is (in terms of the representation of text, background and image)

to the image to be segmented.

Table 6.1: This table shows the parameters used for the creation of the genetic programs
shown in the results tables. The parameters listed are the parameters that differ from the
default parameters of the genetic training system (see table 5.1). The parameters used were
chosen for a medium length run time. Each genetic program name is the same as the name
of the file used to train the genetic program.

Genetic program Seed Max individual Population Number of
height size generations

th 00527 1176064598 3 100 20000
th 00531 1176043820 4 100 20000
th 00545 1176116394 3 100 20000
th 00564 1176112366 3 100 20000
th 00839 1176071382 3 50 20000

6.3 Methods used for comparison of results

In the discussion of the results of the system Receiver Operator Characteristic (ROC) space

graphs (discussed in section 6.4.1) and some numerical measures (discussed in section

80

6.4) are used. The ROC space graphs and the numerical measures are determined by the

confusion matrices of the results (discussed in section 6.3.2).

6.3.1 Basic terminology

True Positives (TP)

The number of correct classifications in which a region is classified as belonging to the

extracted class.

False Positives (TP)

The number of classifications in which a region is incorrectly classified as belonging to the

extracted class.

False Negatives (FN)

The number of classifications in which a region is incorrectly classified as not belonging to

the extracted class.

True Negatives (TP)

The number of classifications in which a region is correctly classified as not belonging to

the extracted class.

6.3.2 Confusion matrices

Confusion matrices are commonly used in the field of artificial intelligence when it is nec-

essary to determine the accuracy of classification systems, as well as other disciplines

where it is necessary to determine the accuracy of tests (such as medicine, psychology

and economics)[34, 94]. Since our system classifies regions as belonging to, or not belong-

ing to a class, the system has four possible results (in terms of confusion matrices) for each

classification:

– a true positive result (a correct assignment of a region to a class).

– a true negative result (a correct assignment of a region as belonging to a class).

81

– a false positive result (an incorrect assignment of a region as belonging to a class,

when the region does not actually belong to the class).

– a false negative result (an incorrect assignment of a region as not belonging to a class,

when the region does actually belong to the class).

In our case, the confusion matrices will look as follows (table 6.2):

Table 6.2: The format of the confusion matrices used in this dissertation. p is an actual
positive value, n is an actual negative value, p’ is a predicted positive value, n’ is a pre-
dicted negative value, P’ is the total number of predicted positive values, N’ is the total
number of predicted negative values, P is the total number of actual positive values, and N
is the total number of actual negative values. TP,TN,FP,FN are described in section 6.3.1

Actual values
p n

Predicted values p’ TP FP P’
n’ FN TN N’

P N

6.4 Measures derived from a confusion matrix

For this, and more information on ROC analysis, consult [94, 34].

True Positive Rate (TPR)

The rate of correct classifications.

TPR = TP/P (6.1)

False Positive Rate (FPR)

The rate of incorrect positive classifications.

FPR = FP/N (6.2)

Accuracy (ACC)

The rate of correct classifications out of all classifications.

ACC = (TP + TN)/(P +N) (6.3)

82

Precision (PPV)

The rate of true positive classifications out of all positive classifications.

PPV = TP/(TP + FP) (6.4)

6.4.1 Receiver Operator Characteristic (ROC) graphs

A receiver operating characteristic graph is a technique used to visualize the performance

of classifiers. ROC graphs are commonly used to depict hit rates and false alarm rates of

classifiers as well as for visualizing and analyzing the performance of diagnostic systems.

ROC analysis has been used in the fields of medicine, radiology, psychology, machine

learning, data mining, amongst others[34, 94]. In the case of the systems implemented, the

results can be visualized as points on ROC space. A ROC space plot is generally of TPR

against FPR, as shown in figure 6.1.

Figure 6.1: Typical ROC graph output from the system implemented.

83

6.5 Individual results

Some individual results from the K-Means algorithm and the genetic algorithms can be

viewed in appendices D and E. The original images used to produce the results can be

viewed in appendix C. Due to space limitations, not all of the results (32 large images,

each segmented ten times) can be shown in this dissertation. However, all results discussed

can be generated with the application on the attached compact disc (the disc also contains

the image files that were segmented as well as the genetic programs used to segment them).

6.5.1 Result comparison

Image extraction

In terms of accuracy, the post-processed K-Means algorithm performed as well as two

of the genetic programs (”th 00531” and ”th 00545”), while being out performed by two

others. Genetic program ”th 00527” clearly outperforms the post-processed K-Means al-

gorithm in terms of accuracy (see table 6.3 and figure 6.2). Appendix B illustrates the

results of each algorithm in detail via ROC graphs. Table 6.3 gives a full list of results

obtained when extracting the image segment of the document images in the data set.

Text extraction

The post-processed K-Means algorithm was out-performed by all five of the genetic pro-

grams. Appendix B illustrates the results of each algorithm in detail via ROC graphs. Table

6.4 gives a full list of results obtained when extracting the image segment of the document

images in the data set.

6.5.2 Run-time comparison

The major difference between the two methods (in terms of run-time) lies in the amount of

pre-calculation necessary to obtain good results. The number of features used by the ge-

netic program is far lower than the number of features used by the GLCM/K-Means based

algorithm (since the genetic program is a type of feature selection and merging algorithm).

The post-processed K-Means segmentations shown have all used sixty four features. The

84

Table 6.3: Accuracy values obtained when extracting the image component of large docu-
ment images via various methods. The post-processed K-Means based algorithm was run
five times on each data set and the average result was used. The genetic programs (denoted
by a ’G’ prefix) are numbered according to their source of training data (eg. G527 is a
genetic algorithm trained from image th P00527).

Data set K-Means G531 G839 G564 G545 G527
th P00531 0.91 0.95 0.95 0.92 0.92 0.93
th P00539 0.91 0.95 0.93 0.91 0.94 0.97
th P00527 0.96 0.96 0.95 0.91 0.95 0.97
th P00839 0.83 0.91 0.93 0.8 0.86 0.87
th P00837 0.82 0.96 0.94 0.97 0.98 0.97
th P00825 0.98 0.97 0.97 0.96 0.98 0.97
th P00836 0.92 0.94 0.95 0.97 0.97 0.93
th P00826 0.98 0.95 0.96 0.96 0.97 0.98
th P00805 0.82 0.47 0.83 0.37 0.47 0.99
th P00804 0.82 0.75 0.83 0.8 0.77 0.8
th P00617 0.97 0.98 0.97 0.95 0.97 0.98
th P00616 0.96 0.97 0.98 0.95 0.96 0.96
th P00611 0.97 0.97 0.98 0.9 0.94 0.98
th P00610 0.97 0.96 0.97 0.93 0.95 0.96
th P00607 0.95 0.97 0.97 0.96 0.98 0.98
th P00606 0.99 0.98 0.98 0.94 0.97 0.97
th P00605 0.99 0.99 0.99 0.97 0.98 0.97
th P00566 0.9 0.88 0.74 0.95 0.9 0.9
th P00565 0.92 0.84 0.65 0.97 0.89 0.84
th P00564 0.9 0.79 0.63 0.98 0.89 0.82
th P00563 0.95 0.95 0.89 0.98 0.94 0.94
th P00562 0.95 0.96 0.9 0.99 0.95 0.95
th P00555 0.91 0.95 0.96 0.88 0.92 0.94
th P00545 0.92 0.92 0.92 0.94 0.98 0.93
th P00542 0.87 0.94 0.93 0.89 0.92 0.94
th P00541 0.83 0.91 0.9 0.85 0.89 0.88
th P00540 0.95 0.91 0.97 0.83 0.89 1
th P00535 0.97 0.97 0.96 0.85 0.92 0.99
th P00534 0.97 0.96 0.96 0.9 0.92 0.98
th P00533 0.8 0.87 0.9 0.85 0.88 0.91
th P00528 0.95 0.97 0.97 0.98 0.98 0.98
th P00827 0.89 0.94 0.95 0.96 0.97 0.96
AVERAGE 0.92 0.92 0.92 0.91 0.92 0.94

85

Figure 6.2: This figure illustrates the True Positive Rate (TPR) and False Positive Rate
(FPR) of the image extraction algorithms via a ROC graph.

Figure 6.3: A comparison of the average accuracies of the image extraction methods via a
bar graph.

86

Table 6.4: Accuracy values obtained when extracting the text component of large document
images via various methods. The post-processed K-Means based algorithm was run five
times on each data set and the average result was used. The genetic programs (denoted by
a ’G’ prefix) are numbered according to their source of training data (eg. G527 is a genetic
algorithm trained from image th P00527).

Data set K-Means G531 G839 G564 G545 G527
th P00531 0.91 0.98 0.96 0.98 0.95 0.98
th P00539 0.88 0.9 0.95 0.87 0.95 0.94
th P00527 1 1 0.99 0.96 0.98 1
th P00839 0.84 0.9 0.93 0.84 0.87 0.88
th P00837 0.84 0.99 0.99 0.98 0.99 1
th P00825 0.99 0.98 0.98 0.96 0.98 0.99
th P00836 0.93 0.94 0.97 0.96 0.96 0.93
th P00826 0.95 0.94 0.94 0.92 0.95 0.95
th P00805 0.7 0.41 0.75 0.41 0.49 0.91
th P00804 0.84 0.84 0.82 0.85 0.84 0.87
th P00617 0.94 0.93 0.94 0.9 0.93 0.97
th P00616 0.94 0.96 0.97 0.94 0.98 0.98
th P00611 0.91 0.89 0.93 0.83 0.91 0.97
th P00610 0.96 0.94 0.94 0.9 0.89 0.93
th P00607 0.96 0.97 0.99 0.95 0.97 0.98
th P00606 0.9 0.9 0.9 0.88 0.87 0.9
th P00605 0.95 0.95 0.96 0.93 0.96 0.96
th P00566 0.91 0.94 0.66 0.97 0.84 0.91
th P00565 0.92 0.93 0.6 0.98 0.85 0.91
th P00564 0.9 0.95 0.64 0.99 0.87 0.93
th P00563 0.92 0.97 0.86 0.97 0.91 0.93
th P00562 0.97 0.97 0.88 0.99 0.92 0.93
th P00555 0.8 0.9 0.94 0.91 0.91 0.9
th P00545 0.83 0.89 0.92 0.98 1 0.92
th P00542 0.84 0.93 0.95 0.92 0.92 0.92
th P00541 0.8 0.98 0.91 0.97 0.96 0.96
th P00540 0.87 0.87 0.95 0.8 0.87 0.97
th P00535 0.96 0.96 0.96 0.87 0.91 0.98
th P00534 0.98 0.98 1 0.9 0.91 1
th P00533 0.82 0.9 0.94 0.84 0.88 0.94
th P00528 0.99 0.99 1 0.98 0.98 0.99
th P00827 0.78 0.96 0.97 0.95 0.97 0.96
AVERAGE 0.90 0.92 0.91 0.91 0.91 0.95

87

Figure 6.4: The True Positive Rate (TPR) and False Positive Rate (FPR) of the text extrac-
tion algorithms illustrated via a ROC graph.

Figure 6.5: A comparison of the average accuracies of the text extraction methods via a
bar graph.

88

genetic programming based segmentations generally use fewer than ten features to per-

form segmentations (depending on the genetic parameters). While it is possible to lower

the number of features the post-processed K-Means based segmentation algorithm uses,

the quality of the segmentation is likely to decrease without feature selection being applied

to K-Means based algorithm.

On an Intel(R) Centrino(R) Duo T2400 running at 1.83GHz, each segmentation al-

gorithm (the K-Means based algorithm or a genetic program) takes around one second to

run on an large sized image (around 800 × 1000 pixels) without the Haralick feature cal-

culations. The sixty four used Haralick features of an image are calculated at a rate of one

million pixels per minute (with a block size of 16 × 16). It is unnecessary to calculate

so many Haralick features, and when dealing with a batched process of a large number

of document images to be segmented, such unnecessary calculations could turn out to be

very time consuming. The genetic programs perform the segmentations using only a small

subset of features, all of which are relevant to the task, whereas the post-processed K-

Means algorithm performs no feature selection and thus uses an unnecessarily large group

of features to perform segmentations.

6.5.3 Qualitative comparison

In order to compare the quality of the segmentation systems implemented, the system was

used to segment an image that was segmented by Dong et al.[31]. The method used by

Dong et al. is discussed in section 2.4. See figure 6.6 for a visual comparison of the

segmentation results.

Dong et al.’s method seems to be rather accurate. Judging by the visual output of their

system, they appear to prioritise the avoidance of false negative image and text classifica-

tions, resulting in somewhat more false positive classifications of image and text regions.

The genetic programming based system’s heuristic attempts to optimise overall accuracy,

treating false negative and false positive classifications equally.

The genetic programming based method is also designed to work with somewhat noisier

images than image 6.6 (such as newspaper and magazine scans), and thus will not perform

as accurately as a segmentation method which could be aimed at segmenting web page

images. For example, some of the images in the document image have a light grey back-

ground. This could be interpreted as a noisy background, or as part of an image region. If it

89

is known that a web page is being segmented, one can assume that the background will be

made up of a smooth single colour, leading to extremely simple background classification

at the expense of noise tolerance.

Despite the genetic program being trained to segment images with a lot of noise, it still

performs very well when segmenting the web page in figure 6.6.

6.5.4 Statistical significance

In order to prove the statistical significance of the results, the Z-test is used (see equations

6.5 and 6.6). A confidence level of 95% will be used (an alpha value of 0.05). The Z-score

for an alpha value of 0.05 is 1.65.

SE =
σ√
n

(6.5)

z =
x− μ

SE
(6.6)

Using the results (table 6.4 for text classification and table 6.3 for image classification)

from the segmentation of the document images via the K-Means algorithm and the genetic

programming based algorithm (genetic program G527):

Text classification statistical significance

sample size(n) = 32

sample mean(m) = 0.9466

k-means mean(μ) = 0.8978

k-means standard deviation(σ) = 0.0718

Standard Error SE = 0.0718/
√

32

SE = 0.0127

z =
0.9466 − 0.8978

SE

90

Figure 6.6: The top left image is the original image taken from [31]. The top right image is
the image segmented via Dong et al.’s system (taken from [31]). In the top right image, the
black areas represent the text class, grey areas represent the image class and white areas
represent the background class. The bottom left image is the original image segmented by
a genetic program trained from the newspaper training set. The bottom right image is the
original image segmented by the post-processed K-Means/Haralick feature based system
used for comparison in this dissertation.

91

z =
0.0488

0.0127

z = 3.8425

The value from the Z-table for z = 3.8425 is greater than the Z value of 1.65 required

for a 95% confidence level. It can be said that the performance of the GP based document

image segmentation algorithm is better than that of the GLCM/K-Means based algorithm

for text segment classification with a 95% confidence level.

Image classification statistical significance

sample size(n) = 32

sample mean(m) = 0.9419

k-means mean(μ) = 0.9197

k-means standard deviation(σ) = 0.0574

SE = 0.0574/
√

32

SE = 0.0101

z =
0.9419 − 0.9197

SE

z =
0.0222

0.0101

z = 2.1980

The value from the Z-table for z = 2.1980 is greater than the Z value of 1.65 required

for a 95% confidence level. It can be said that the performance of the GP based document

image segmentation algorithm is better than that of the GLCM/K-Means based algorithm

for image segment classification with a 95% confidence level.

6.6 Interpretation of trained genetic programs:

A sample size of twenty genetic program pairs have been examined in order to find trends

in the feature, angle, distance triples that they use.

92

6.6.1 Image

The most common Haralick feature used in the image segmentation genetic programs is

mean with 42 out of 93 triples, followed by contrast with 21 out of the 93 triples. Mean

is regarded as a useful Haralick feature when extracting the image region of a document

image, the large amount of contrast triples is due to contrasts text extraction ability, which

would be used for text removal in the genetic programs. The distance parameter of 2 is

the most frequently occurring with 68 out of 93 triples. No particular angle seems to be

dominant when segmenting images. The individuals examined had on average 4.65 triples

each.

6.6.2 Text

The most common Haralick feature present in the text segmentation genetic programs dis-

cussed in this chapter is contrast/inertia with 51 out of 67 triples. This is an expected result

since contrast/inertia measures local variance and is known to be a useful feature for seg-

menting text. The distance parameter of 1 is the most frequently occurring with 45 out of

67 triples. Angles of 0 and 90 degrees are equally dominant when segmenting text with

60 out of 67 triples having angles of 0 or 90 degrees, this is an expected result due to the

highly directional nature of text. The individuals examined had on average 3.4 triples each.

6.7 Random individual generation vs. genetic programming based individual gen-

eration

Due to the manner in which the terminals are constructed it is not unusual for randomly

created individuals to achieve high fitness values.

– Since each terminal represents a segmentation of a component of the target image

by a Haralick feature, angle, distance triple, these segmentations sometimes achieve

good results by themselves. The aim of the system is to create better segmentations

by merging these simpler segmentations together, yielding an improved fitness over

an already potentially good fitness.

– Since there are a lot of terminals that may individually have a high fitness, there are

potentially many combinations that yield good results present in the search space.

93

This increases the odds of a good random solution being found.

– Improvements of fitness over the initially generated members appear small, since an

individual with a good fitness is relatively common; however, an individual with a

fitness of a few % higher can be extremely rare (see figure 6.7) and unlikely to be

found with a random search.

Figure 6.7: This figure shows the occurrences of the top fitness values out of a sample of
30000 randomly created individuals. The maximum fitness value is 92% (the top 0.03% of
the population). The minimum fitness value on the graph is 86%, representing 0.27% of the
population. Run parameters are: two separate runs of 1 generation length, 3 populations of
5000 individuals with the applications default parameter values and seeds of 1205095725
and 1205099401. The training data set used was ”th P00531”.

Chapter 7

Conclusion and future work

In this dissertation, the problems examined include feature extraction, classification, and

more specifically feature extraction and classification applied to the problem of document

image segmentation.

The problem description was formulated by performing a survey of literature related

to document image segmentation in the fields of genetic programming, classification and

more general image processing. Document image segmentation using genetic program-

ming appears to be a fairly new field as there is a relatively small amount of information

available on the subject compared to other document image segmentation techniques.

In this dissertation, some common methods of feature extraction have been discussed,

including Markov random fields, discrete wavelet transforms, Gabor filtering and grey level

co-occurrence matrices (GLCM) with Haralick features. This research has focused on the

use of Haralick features extracted from grey level co-occurrence matrices for performing

feature extraction on document images and has used it as part of the genetic programming

approach as well as a part of the K-Means based method for comparison against the genetic

programming based system.

In terms of discussion and what has been implemented, classification and clustering

techniques have been approached with the goal of segmenting the Haralick feature space.

Such techniques include the K-Means and C-Means algorithms. However, there are several

problems with the K-Means and C-Means algorithms in terms of robustness, accuracy and

efficiency (as discussed in sections 3.4.1 and 3.4.2).

In this dissertation, a genetic programming based solution that performs segmentations

and combines them according to the particular genetic program in order to solve the docu-

ment image segmentation problem has been presented. The segmentations that the genetic

programs use can be from the K-Means algorithm or even a combination of any segmenta-

tion algorithms that express their segmentation results in the same format. However, for the

purpose of this project, the generated genetic programs only use K-Means segmentations.

94

95

From experiments performed (see table 6.4) using the post-processed K-Means based

method and the genetic programming based method, it appears that the genetic program-

ming based method is capable of producing better and more consistent results (when pro-

vided with training data that sufficiently represents the text, image and background classes)

than the post-processed K-Means based algorithm. The genetic programs, once trained, are

also able to make more efficient use of the Haralick features, possibly resulting in a lower

total segmentation time since, on average, fewer Haralick features need to be calculated for

a segmentation of comparable quality. This is due to the feature selection performed by the

GP based method when applied to K-Means segmentations of Haralick features.

In this dissertation, it has been shown that genetic programming can be used to com-

bine various document image segmentation inputs, potentially from a number of different

sources. It has also been demonstrated that genetic programming has the potential to im-

prove over existing techniques in the field of document image segmentation

7.1 Limitations

Although improvements have been presented (as mentioned in section 7.2), the system has

some limitations:

(1) Very large differences between the distribution of Haralick features in the training

image and the image to be segmented could result in lower accuracy. Such cases are

uncommon.

(2) Thought needs to be given to the choice of training image. The training image needs

to be as representative as possible when compared to the rest of the images to be

segmented (for example: the training image needs to have a reasonable amount of

the text, image and background components).

7.2 Future work

Possible future work could include:

(1) The analysis of a larger variety of images for different types of texture segmentation.

96

(2) The introduction of heuristics that take execution and feature calculation speed into

account. This would be very useful for making segmentation algorithms that are very

fast, but quite accurate.

(3) Due to the manner in which the genetic system combines features, it is possible to

apply parallel processing in order to increase the speed of the segmentations.

(4) The genetic training system is able to take input from sources other than K-Means

segmentations of Haralick features (such as images segmented using Gabor filters or

discrete wavelet transforms). The combination of various segmentation techniques

could yield interesting results.

(5) The majority of the data for the system is stored in separate files (such as the ge-

netic programs, test images, testing data, etc), while results are stored in the results

database. The results database could be enhanced to store all of the data pertaining to

the program and possibly converted to a SQL database (as opposed to its current text

based incarnation). More statistical functionality could then be added to the result

viewing sub-program.

(6) Expansion of the genetic system to allow a genetic program to train on several train-

ing images simultaneously.

(7) Expansion of the system to allow it to work with multiple block sizes simultaneously.

Bibliography

[1] The mediateam document database. (available at medi-
ateam.oulu.fi/downloads/mtdb/download.html).

[2] Ajith Abraham, N. Nedjah, and L. Mourelle. Evolutionary computation: from genetic
algorithms to genetic programming. Genetic Systems Programming, 2006.

[3] M.R. Anderberg. Cluster analysis for applications. Academic Press Inc., 1973.

[4] D. Anguelov, B. Taskar, V. Chatalbashev, D. Koller, D. Gupta, G. Heitz, and A. Ng.
Discriminative learning of markov random fields for segmentation of 3d scan data. In
CVPR ’05: Proceedings of the 2005 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’05) - Volume 2, pages 169–176, Washington,
DC, USA, 2005. IEEE Computer Society.

[5] C. A. Ankenbrandt, B. P. Buckles, and E. E. Petry. Scene recognition using genetic
algorithms with semantic nets. Pattern Recognition Letters, 11:285–293, April 1990.

[6] D. Arthur and S. Vassilvitskii. How slow is the k-means method? In In Proc. 22nd
SoCG, pages 144–153, 2006.

[7] D. Arthur and S.i Vassilvitskii. k-means++: The advantages of careful seeding. Tech-
nical report, Stanford University, 2006.

[8] D. Ashlock. Data crawlers for simple optical character recognition. In Proc. of the
2000 Congress on Evolutionary Computation, pages 706–713, Piscataway, NJ, 2000.
IEEE Service Center.

[9] A. P. Asirvatham. Script segmentation of multi-script documents, bachelors thesis,
international institute of information technology, 2002.

[10] A. K. Bachoo and J. R. Tapamo. Texture analysis and unsupervised clustering for
segmenting iris images. PRASA 2005, pages 157–163, 2005.

[11] T. Bäck. Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evo-
lutionary Programming, Genetic Algorithms. Oxford Univ. Press., 1996.

[12] P. Baldi and G.W. Hatfield. DNA Microarrays and Gene Expression. Cambridge
Univ. Press, 2002.

[13] S. Bandyopadhyay and U. Maulik. An evolutionary technique based on k-means
algorithm for optimal clustering in R

N . Information SciencesApplications: An Inter-
national Journal, 146:221–237, 2002.

97

98

[14] A. Barta and I. Vajk. Document image analysis by probabilistic network and circuit
diagram extraction. Informatica, 29:291301, 2005.

[15] B. Bhanu, S. Lee, and J. Ming. Adaptive image segmentation using a genetic algo-
rithm. Image Understanding Workshop, pages 1043–1055, 1989.

[16] S.K. Bhatia and J.S. Deogun. Conceptual clustering in information retrieval. IEEE
Trans. Systems, Man, and Cybernetics Part B, 28:427–436, 1998.

[17] S. Bhattacharjee, Y. Chen, and A. Jain. On texture in document images. In Proceed-
ings of Computer Vision and Pattern Recognition, 31:677–680, 1992.

[18] C. A. Bouman and H. Cheng. Document compression using rate-distortion optimized
segmentation. Journal of Electronic Imaging, 10(2):460–474, April April 2001.

[19] A. C. Bovik and M. Clark. Experiments in segmenting texton patterns using localized
spatial filters. Pattern recognition, 22:707–717, 1989.

[20] J. Burpee. Genetic programming. In CSI 5388, 2005.

[21] J. D. Carroll and A Chaturvedi. A feature-based approach to market segmentation via
overlapping k-centroids clustering. J. Marketing Research, 34(3):247–254, 1997.

[22] W. Chan and J. Sivaswamy. Local energy analysis for text script classification. In
Image and Vision Computing New Zealand, 99.

[23] F. Chang, C. H. Chou, E. Lai, and M. C. Su. A reinforcement-learning approach to
color quantization. In Intelligent Systems and Control, 2004.

[24] S. Chen and D. Zhang. A novel kernelized fuzzy c-means algorithm with application
in medical image segmentation. Artificial Intelligence in Medicine, 32:37–50, 2004.

[25] D. N. Chun and H. S. Yang. Robust image segmentation using genetic algorithm with
a fuzzy measure. Pattern Recognition, 29(7):1195–1211., July July.

[26] V. Ciesielski, A. Innes, S. John, and J. Mamutil. Genetic programming for landmark
detection in cephalometric radiology images. International Journal of Knowledge-
Based Intelligent Engineering Systems, 7(3):401–409, 2003.

[27] Wikipedia Contributors. Wikipedia entry on markov random fields. Available at:
(http://en.wikipedia.org/wiki/Markov network), 2006.

[28] G. R. J. Cooper. The textural analysis of gravity data using co-occurence matrices.
Computers and Geosciences, 30:107–115, 2004.

[29] I. Dinstein and R. M. Haralick. Textural features for image classification. IEEE Trans-
actions on Systems, Man, and Cybernetics, SMC-3(6):610–621, November 1973.

[30] J. Dombi and M. Jelasity. Gas, a concept on modeling species in genetic algorithms.
Artificial Intelligence, 99:1–19, 1998.

99

[31] Y. Dong, G. Fan, L. Liu, and X. Song. A simplified quantization rate-distortion model
for fast document image segmentation. Technical report, School of Electrical and
Computer Engineering, Oklahoma State University, Stillwater.

[32] A.E. Eiben and J.E. Smith. Introduction to Evolutionary Computing. Springer, 2003.

[33] G. Fan and X. G. Xia. A joint multi-context and multiscale approach to bayesian
image segmentation. IEEE Trans. Geoscience and Remote Sensing, 39(12), December
2001.

[34] T. Fawcett. An introduction to roc analysis. Pattern Recognition Letters, 27:861874,
2006.

[35] L. A. Fletcher and R. Kasturi. A robust algorithm for text string separation from
mixed text/graphics images. 10(6):910–918, 1988.

[36] K. Franke and M. Koppen. A framework for document pre-processing in forensic
handwriting analysis. In Proceedings of the Seventh International Workshop on Fron-
tiers in Handwriting Recognition, pages 73–82, September 2000.

[37] H. Frigui and R. Krishnapuram. A robust competitive clustering algorithm with appli-
cations in computer vision. IEEE Trans. Pattern Analysis and Machine Intelligence,
5(5):450–465, May 1999.

[38] S. Geman and D. Geman. Stochastic relaxation, gibbs distributions, and the bayesian
restoration of images. . IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 6:721–741, 1984.

[39] U. Grasemann and R. Miikkulainen. Effective image compression using evolved
wavelets. GECCO, June 2005.

[40] A. Haar. Zur theorie der orthogonalen funktionensysteme. Mathematische Annalen,
69:331–371, 1910.

[41] R.M. Haralick. Statistical and structural approaches to texture. Proceeding of the
IEEE, 7(5):786804, 1979.

[42] S. J. Hartley. Stephen j. hartley’s web page. Available at:
(http://www.mcs.drexel.edu/ shartley/), July 2006.

[43] A. Hill and C. J. Taylor. Model-based image interpretation using genetic algorithm.
Image Fis. Comput., 10:295–300, June 1992.

[44] J.H. Holland and J.S. Reitman. Cognitive systems based on adaptive algorithms.
In D. A. Waterman and F. Hayes-Roth, editors, Pattern-Directed Inference Systems.
Academic Press, 1978.

100

[45] M. Iwayama and T. Tokunaga. Cluster-based text categorization: A comparison of
category search strategies. IEEE Trans. Pattern Analysis and Machine Intelligence,
13(3):252–264, March 1991.

[46] A. Jain, N. Ratha, and S. Lakshmanan. Object detection using gabor filters. 1997,
30:295–309, 1997.

[47] A. K. Jain and F. Korrokhnia. Unsupervised texture segmentation using gabor filters.
Pattern Recognition, 24(12):1167–1186, 1991.

[48] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman, and A. Y.
Wu. The analysis of a simple k -means clustering algorithm. In Symposium on Com-
putational Geometry, pages 100–109, 2000.

[49] R. Kasturi, L. OGorman, and V. Govindaraju. Document image analysis: A primer.
special issue on Document Processing, 2002.

[50] Z. Kato and T. Pong. A markov random field image segmentation model using com-
bined color and texture features.

[51] L. Kaufman and P. Rousseeuw. Finding Groups in Data. An Introduction to Cluster
Analysis. Wiley, 1990.

[52] O. Kia. Document Image Compression and Analysis. PhD thesis, University of Mary-
land at College Park, 1997.

[53] John R. Koza. Genetic programming: On the programming of computers by means
of natural selection (complex adaptive systems). The MIT Press, December 1992.

[54] M. Lett and M. Zhang. New fitness functions in genetic programming for object
detection. Technical report, Akaroa, New Zealand, November 2004.

[55] C.T. Lia and R. Chiao. Multiresolution genetic clustering algorithm for texture seg-
mentation. Image and Vision Computing, 21:955966, 2003.

[56] M.W. Lin, J.R. Tapamo, and B. Ndovie. A texture based segmentation for document
segmentation and classification. South African Computer Journal, (36):49–56, 2006.

[57] M. Luo, Y. Ma, and H. Zhang. A Spatial Constrained K-Means Approach to Image
Segmentation. Fourth IEEE Pacific-Rim Conference On Multimedia, pages 738 –
742, December 2003.

[58] J.B. MacQueen. Some methods for classification and analysis of multivariate observa-
tions. In L. M. Le Cam and J. Neyman, editors, Proc. of the fifth Berkeley Symposium
on Mathematical Statistics and Probability, volume 1, pages 281–297. University of
California Press, 1967.

101

[59] H.C. Martin and A.T. Mario. Simultaneous feature selection and clustering using
mixture models. IEEE Transactions on Pattern Analysis and Machine Intelligence,
26, 2004.

[60] M.F. McNitt-Gray, N. Wyckoff, J.W. Sayre, J.G. Goldin, and D.R. Aberle. The effects
of co-occurrence matrix based texture parameters on the classification of solitary pul-
monary nodules imaged on computed tomography. Computerized Medical Imaging
and Graphics, 23:339, 1999.

[61] P. Moscato. On evolution, search, optimization, genetic algorithms and martial arts:
Towards memetic algorithms. Technical report, Caltech Concurrent Computation Pro-
gram, 1989.

[62] R.F. Murphy, M. Velliste, and G. Porreca. Robust classification of subcellular location
patterns in fluorescence microscope image. In IEEE Intl Workshop Neural Networks
Signal Processing, volume 12, pages 67–76., 2002.

[63] G. Nagy, S. Seth, and S. Stoddard. Document analysis with an expert system. In In
Proceedings of Pattern Recognition in Practicem, Amsterdam, volume 2, June 1985.

[64] M. Obitko. Introduction to genetic algorithms. Available on:
http://cs.felk.cvut.cz/ xobitko/ga/, 1998.

[65] L. O’Gorman and R. Kasturi. Document Image Analysis. IEEE Computer Society
Press, April 1995.

[66] W. Pedrycz. Knowledge-Based Clustering. John Wiley & Sons, Inc., 2005.

[67] J.M. Pena, J.A. Lozano, and P. Larranaga. An empirical comparison of four initializa-
tion methods for the k-means algorithm. Pattern Recognition Letters, 20:10271040,
1999.

[68] J.M. Pena, J.A. Lozano, and P. Larranaga. An empirical comparison of four initializa-
tion methods for the k-means algorithm. Pattern Recognition Letters, 20:1027–1040,
1999.

[69] N. Pillay. An introduction to genetic programming (lecture notes). School of Com-
puter Science, University of Kwa-Zulu Natal, 2007.

[70] R. Poli. Discovery of symbolic, neuro symbolic and neural networks with parallel
distributed genetic programming. Technical Report CSRP-96-14, August 1996.

[71] R. Poli. Genetic programming for feature detection and image segmentation. In T. C.
Fogarty, editor, Evolutionary Computing, number 1143, pages 110–125, University
of Sussex, UK, 1-2 1996. Springer-Verlag.

102

[72] R. Poli. Genetic programming for image analysis. In John R. Koza, David E. Gold-
berg, David B. Fogel, and Rick L. Riolo, editors, Genetic Programming 1996: Pro-
ceedings of the First Annual Conference, pages 363–368, Stanford University, CA,
USA, FebruaryAugust–MarchJanuary 1996. MIT Press.

[73] R. Polikar. The engineers ultimate guide to wavelet analysis: The wavelet tutorial.
(Available at: http://users.rowan.edu/ polikar/WAVELETS/WTtutorial.html).

[74] V. Ramos and F. Muge. Image colour segmentation by genetic algorithms. Technical
report, CVRM - Centro de Geosistemas, Instituto Superior Tcnico, Av. Rovisco Pais,
Lisboa, Portugal.

[75] S.J. Raudys and A.K. Jain. Small sample size effects in statistical pattern recogni-
tion: Recommendations for practitioners. IEEE Trans. Pattern Analysis and Machine
Intelligence, 13(3):252–264, March 1991.

[76] J. Rennard. Introduction to genetic algorithms. Available on:
http://www.rennard.org/alife/english/gavintrgb.html, July 2006.

[77] S. V. Rice, J. Kanai, and T.A. Nartker. Report on the accuracy of ocr devices. Tech-
nical report, Information Science Research Institute, 1992.

[78] G. Roth and M.D. Levine. A genetic algorithm for primitive extraction. Proc. 4th Intl
Conf. Genetic Algorithm, pages 487–494, July 1991.

[79] J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Trans. Pattern
Analysis and Machine Intelligence, 22(8):888–905, August 2000.

[80] S.J. Simske. Navigation using hybrid genetic programming: Initial conditions and
state transitions. Technical report, Intelligent Enterprise Technologies Lab, HP Lab-
oratories, March 11, 2003.

[81] N. Sinha and A.G. Ramakrishnan. Automation of differential blood count. In TEN-
CON, volume 2, pages 547–551, 2003.

[82] W.R. Smart and M. Zhang. Classification strategies for image classification in genetic
programming. In Image and Vision Computing New Zealand, 2003.

[83] A. Song and V. Ciesielski. Fast texture segmentation using genetic programming. In
Ruhul Sarker, Robert Reynolds, Hussein Abbass, Kay Chen Tan, Bob McKay, Daryl
Essam, and Tom Gedeon, editors, Proceedings of the 2003 Congress on Evolutionary
Computation CEC2003, pages 2126–2133, Canberra, 8-12 December 2003. IEEE
Press.

[84] A. Song and V. Ciesielski. Texture analysis by genetic programming. In In Proceed-
ings of the 2004 Congress on Evolutionary Computation (CEC2004), 2004.

103

[85] N. Speer, C. Spieth, and A. Zell. In a memetic clustering algorithm for the functional
partition of genes based on the gene ontology. Proceedings of the 2004 IEEE Sym-
posium on Computational Intelligence in Bioinformatics and Computational Biology,
pp 252-259.

[86] P.K. Spivak. Discovery of optical character recognition algorithms using genetic pro-
gramming. In John R. Koza, editor, Genetic Algorithms and Genetic Programming at
Stanford 2002, pages 223–232. Stanford Bookstore, Stanford, California, 94305-3079
USA, June 2002.

[87] Z. Sun, G. Bebis, and R. Miller. On-road vehicle detection using evolutionary ga-
bor filter optimization. IEEE Transations on Intelligent Transportation Systems,
6(2):125–137, June 2005.

[88] K. Tombre, S. Tabbone, L. Pellissier, B. Lamiroy, and P. Dosch. Text/graphics separa-
tion revisited. Proceedings of the 5th International Workshop on Document Analysis
Systems V, pages 200 – 211, 2002.

[89] K. Torkkola. Feature extraction by non-parametric mutual information maximization.
Journal of Machine Learning Research, 3:1415–1438, 2003.

[90] V. Torra. Fuzzy c-means for fuzzy hierarchical clustering. In FUZZ-IEEE 2005, Reno,
Nevada on May 22-25, 2005,, pages 646 – 651, 2005.

[91] M. Wall. Introduction to genetic algorithms. Available at: http://lancet.mit.edu/ mb-
wall/, July 2006.

[92] Q. Wang, T. Xia, C.L. Tan, and L. Li. Directional wavelet approach to remove doc-
ument image interference. Proceedings of the Seventh International Conference on
Document Analysis and Recognition, 2:736, 2003.

[93] T.P. Weldon, W.E. Higgins, and Dunn D.F. Gabor filter design for multiple texture
segmentation. Optical Engineering, 35:2852–2863, 1996.

[94] L.K. Westin. Receiver operating characteristic (roc) analysis. Technical report, Ume
University, Sweden.

[95] R. Wilson and M. Spann. Image Segmentation and Uncertainty. Research Studies
Press, 1988.

[96] K.Y. Wong, R.G. Casey, and F.M. Wahl. Document analysis system. IBM Journal of
Research and Development, 26(6):647–656, 1982.

[97] F. Wu. A framework for memetic algorithms. Master’s thesis, University of Auckland,
2001.

[98] M. Yoshimura and S. Oe. Evolutionary segmentation of texture image using genetic
algorithms towards automatic decision of optimum number of segmentation areas.
Pattern Recognition, 12:2041–2054, 1999.

104

[99] Y. Zheng, H. Li, and D. Doerman. Machine printed text and handwriting identification
in noisy document images. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 26(3):337–353, March 2004.

Appendix A

Implementation details

A.1 Program Design

In this appendix, the three most significant parts of the program shall be discussed: the

genetic system, the image processing system and the user interface. The way the different

modules of the program interact is best illustrated by the data flow diagram in figure A.1.

Figure A.1: The process of learning and interaction between genetic processing and image
processing demonstrated via a data flow diagram.

105

106

A.2 The genetic system

The genetic system is illustrated via UML in figure A.2. The whole system has been de-

signed with extendibility and modularity in mind. It is possible by simply inheriting the

NodeDescription interface and creating a new class for a new type of problem, to change

the type of problem to be solved entirely. For instance, in the UML diagram, the problem

definition (in terms of the functions, terminals, individual evaluation and fitness function)

for solving Pythagoras’s equation is also a subclass of geneticTree, with a different nod-

eDescription and some other details changed in the geneticTree subclass.

fmGeneticTestingApp

This is the class for the form which controls the input, output and execution for the genetic

system. When the run command on the form is used, it sets the genetic parameters and

initializes the genetic system. The program then performs a run of the genetic system for

each component.

geneticParams

The geneticParams class contains all of the parameters for the genetic system. It contains

variables which determine the percentage of crossover and mutation to apply, the termi-

nation criteria, the population crossover parameters, the random seed used for the system,

a pointer to the progress bar on the user interface, parameters governing the creation and

alteration of individuals (such as height and the way they are randomly grown) as well as

the number and size of the populations.

geneticNode

This class represents the most basic unit of the genetic system. It is a node on a tree, and it

contains functionality to add and remove children, as well as to output all of the nodes in it’s

sub-tree in text format. The geneticNode class keeps variables to keep track of the number

of children a node has, pointers to those children a string representing the value of the node

107

Figure A.2: The genetic system displayed in UML format.

108

(a function or terminal value). The class also has the assignment operator overridden for

the purpose of performing assignments from strings directly to the content of the node.

NodeDescription

NodeDescription contains a description of the problem to be solved in terms of the genetic

program. It contains variables indicating the number of terminals and functions available.

The class also keeps track of the string representation of the function and terminal set. per-

formFunction performs the actions of a specified member of the function set upon however

many terminals and returns the result.

geneticTree

The geneticTree class containts pure virtual functions to be overloaded by it’s subclasses.

The pure virtual functions (evalTree and simplifyTree) are overridden to meet the require-

ments for each application that the genetic system is designed for. The geneticTree class

also has variables to keep track of fitness, the number of nodes in the tree and a pointer to

the root node of the tree.

mathPythagTree

mathPythagTree was the initial testing class for the application. A mathematics genetic pro-

gram was chosen since such an application is a pretty standard way of testing GP systems.

The evalTree and simplifyTree functions have been overridden appropriately according to

the problem.

binaryKMTree

binaryKMTree is the class used to represent the genetic programs that are generated by

the genetic system to solve the problem of segmentation. The class contains an instance

of NodeDescription which performs the functions of the function set on the terminals and

109

performs evaluation of the individuals. The evalTree and simplifyTree functions have been

overridden appropriately according to the problem.

geneticPopulation

The geneticPopulation class controls a population of genetic programs. The class keeps

track of the size of the population, the fittest individual in the population, the individuals

themselves, as well as having the means to perform evolutionary steps on the population

and genetic crossover, mutation and reproduction.

geneticSystem

The geneticSystem class is used to control the populations of the genetic system, perform

population crossovers and control the genetic run in general (this is done in runGeneticSys-

tem). It also keeps track of several statistics of the genetic system, such as the fitness for

each evolutionary step in each population and the fittest individual in the system.

A.3 The image processing system

The image processing system is comprised of several modules with tasks ranging from

filing, to re-colouring and segmentation. The UML for the bulk of the image processing

system is shown in figure A.3. The classes comprising the image processing system are

discussed in more detail in the remainder of this appendix.

HImageProcessor

The HImageProcessor class functions as the root of all of the image processing classes. It

is composed of several classes, one of which has the function of storing data and providing

general image information, the rest of which perform image processing operations (the

operations have been grouped into modules based on the type of operation).

110

Figure A.3: The image processing system displayed in UML format.

111

HImage

HImage is the a module devoted to storing and managing the image data as well as provid-

ing information about the image.

HPm

This class inherits from HImage and is designed to handle the loading of PGM, PBM and

PM images.

HBmp

This class inherits from HImage and is designed to handle the loading of BMP images.

IP Misc

This modules handles some of the more simple image processing function calls, such as

clipping and pixel colour adjustments as well as returning components of colours.

IP Resize

IPResize handles the cropping and scaling of images.

IP Filter

This module handles the filtering of images.

IP ColAdj

This module is for adjusting the colouring of images via binarisation, inversions and grey

112

scale conversion.

IP EdgeDet

This module contains the methods for edge detection.

IP ConnectedComponents

IP ConnectedComponents performs searches for connected components. This module is

mainly used by the post-processing module.

IP Gabor

The IP Gabor class contains all of the functionality to perform Gabor filtering on an image.

IP Segmentation

This class is responsible for the segmentation of images that are passed to it.

A.4 The human interface classes

The main user interface forms are as follows (some others exist that perform very simple

tasks):

TFmMain

This is the main form of the program. It is the first form displayed when the program is

run. It is used for controlling most input and output and much of the systems operations.

113

TFmViewer

This form is used for performing segmentations on an image, creating input data for the

genetic system and for viewing Haralick values.

TFmGeneticTestingApp

The TFmGeneticTestingApp is used to run the genetic system and set its parameters.

TFmDataCreator

This class controls the user input and output when creating test data for the genetic system.

A.5 The filing

The application supports the BMP, PGM and PPM file formats for initial input to the sys-

tem. The application uses three intermediate files to store results obtained, as described in

this appendix. Saving segmentation/graphical database query results in BMP format is also

supported.

A.5.1 .PWN Cached image format

The purpose of this file is to pre-calculate and cache some common calculations pertaining

to a particular image.

The cached file contains the original image, all Haralick features on all angles at 45o

increments at distances of 1 and 2. The file is also capable of containing Gabor filtered

images, however, this has proven to be an unnecessary task for the normal use of the pro-

gram. Due to the large amount of time taken to compute Gabor filtered images, the file

is currently written without the pre-calculated Gabor images. These images can now be

calculated via the ”tools” menu instead.

The Haralick values saved to the file are normalised and rounded off to integers on a

scale of 0 to 1024. The highest and lowest Haralick values that are used to scale the values

114

from 0 to 1024 are also saved as they are later used to determine the original values of the

normalised Haralick values.

The formatting is as follows:

(WIDTH)

(HEIGHT)

(GLCO BLOCKSIZE)

(NUMBER OF IMAGES)

(GABOR MARGIN)

#ORIGINAL IMAGE IN DIRECT GREYSCALE

line by line values of image pixels

numlines = (WIDTH)*(HEIGHT)

#GABORS

#GABOR ANGLE (ANGLE)

line by line values of image pixels

numlines = (WIDTH-(GABOR MARGIN))(HEIGHT-(GABOR MARGIN))

#HARALICKS

#HARALICK (NAMEOFHARALICK) (ANGLE) (DIST)

line by line values of image pixels

numlines = (WIDTH/(GLCO BLOCKSIZE))(HEIGHT/(GLCO BLOCKSIZE))

#IDEAL SEGMENTATION

line by line values of image pixels

numlines = (WIDTH/(GLCO BLOCKSIZE))(HEIGHT/(GLCO BLOCKSIZE))

A.5.2 .GDT Genetic input format

The purpose of the GDT file is to provide all necessary training input to the genetic system.

The GDT file is generated from the segmentation form. When it is created, the application

runs through all possible triples of angle, distance and Haralick feature and performs the

K-Means segmentation for that triple. The segmentations are then stored to GDT file along

115

with the normalisation values of the Haralick features, centroid values for the segmenta-

tions and the user input training data for the genetic system.

A.5.3 .HDT Genetic algorithm format

HDT files store the genetic programs that are trained by the genetic system. Each file

records the titles of each component, followed by the genetic program for extracting the

component. After the extraction programs, the triples used for the extraction are listed,

along with their min and max values used for normalisation (so that the genetic algorithm

can apply to other images that have been normalised with different values) and the values

of the three centroids for each segmentation (see fig A.4).

116

Figure A.4: This is an example of the HDT file format.

Appendix B

Comparison of results

Figure B.1: The above ROC graph illustrates the results of the genetic algorithm trained
from image 527 for extracting the image segment. The red points represent results from
individual document images, the green point represents the average result from the test
data for the algorithm.

117

118

Figure B.2: The above ROC graph illustrates the results of the genetic algorithm trained
from image 531 for extracting the image segment. The red points represent results from
individual document images, the green point represents the average result from the test
data for the algorithm.

Figure B.3: The above ROC graph illustrates the results of the genetic algorithm trained
from image 545 for extracting the image segment. The red points represent results from
individual document images, the green point represents the average result from the test
data for the algorithm.

119

Figure B.4: The above ROC graph illustrates the results of the genetic algorithm trained
from image 839 for extracting the image segment. The red points represent results from
individual document images, the green point represents the average result from the test
data for the algorithm.

Figure B.5: The above ROC graph illustrates the results of the post-processed K-Means
algorithm for extracting the image segment. The red points represent results from individual
document images, the green point represents the average result from the test data for the
algorithm.

120

Figure B.6: The above ROC graph illustrates the results of the genetic algorithm trained
from image 527 for extracting the text segment. The red points represent results from in-
dividual document images, the green point represents the average result from the test data
for the algorithm.

Figure B.7: The above ROC graph illustrates the results of the genetic algorithm trained
from image 531 for extracting the text segment. The red points represent results from in-
dividual document images, the green point represents the average result from the test data
for the algorithm.

121

Figure B.8: The above ROC graph illustrates the results of the genetic algorithm trained
from image 545 for extracting the text segment. The red points represent results from in-
dividual document images, the green point represents the average result from the test data
for the algorithm.

Figure B.9: The above ROC graph illustrates the results of the genetic algorithm trained
from image 839 for extracting the text segment. The red points represent results from in-
dividual document images, the green point represents the average result from the test data
for the algorithm.

122

Figure B.10: The above ROC graph illustrates the results of the post-processed K-Means
algorithm for extracting the text segment. The red points represent results from individual
document images, the green point represents the average result from the test data for the
algorithm.

Appendix C

Original images

The following pages contain the original images used in the example segmentations in the

dissertation.

Figure C.1: The image used in the post-processing demonstration images and the gabor
filtering example.

123

124

Figure C.2: The original image 527 used in the example segmentations and for training.

125

Figure C.3: The original image 528 used in the example segmentations.

126

Figure C.4: The original image 531 used in the example segmentations.

127

Figure C.5: The original image 533 used in the example segmentations.

128

Figure C.6: The original image 534 used in the example segmentations.

129

Figure C.7: The original image 535 used in the example segmentations.

130

Figure C.8: The original image 548 used in the example segmentations.

Appendix D

K-Means based method results

The following pages contain the post-processed K-Means based segmentations of the im-

ages in appendix C.

131

132

Figure D.1: Image 528 (see appendix C for the original image) segmented by the post-
processed K-Means based algorithm.

133

Figure D.2: Image 531 (see appendix C for the original image) segmented by the post-
processed K-Means based algorithm.

134

Figure D.3: Image 531 (see appendix C for the original image) segmented (again) by the
post-processed K-Means based algorithm.

135

Figure D.4: Image 533 (see appendix C for the original image) segmented by the post-
processed K-Means based algorithm.

136

Figure D.5: Image 534 (see appendix C for the original image) segmented by the post-
processed K-Means based algorithm.

137

Figure D.6: Image 535 (see appendix C for the original image) segmented by the post-
processed K-Means based algorithm.

138

Figure D.7: Image 548 (see appendix C for the original image) segmented by the post-
processed K-Means based algorithm. This image demonstrates the problem that occurs
when attempting to segment two natural clusters (text and background) into three clusters
(text, image and background) via the K-Means or C-Means algorithms.

Appendix E

Genetic programming based method results

The following pages contain the genetic programming based segmentations of the images

in appendix C.

139

140

Figure E.1: Image 528 (see section C for the original image) segmented by the genetic
programming based algorithm.

141

Figure E.2: Image 531 (see section C for the original image) segmented by the genetic
programming based algorithm.

142

Figure E.3: Image 533 (see section C for the original image) segmented by the genetic
programming based algorithm.

143

Figure E.4: Image 534 (see section C for the original image) segmented by the genetic
programming based algorithm.

144

Figure E.5: Image 535 (see section C for the original image) segmented by the genetic
programming based algorithm.

145

Figure E.6: Image 548 (see section C for the original image) segmented by the genetic
programming based algorithm.

